Effects of Corticosterone on Beta-Amyloid-Induced Cell Death in SH-SY5Y Cells

Bo Kyeong Do, Jung Hee Jang, Gyu Hwan Park

Research output: Contribution to journalArticlepeer-review

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disease characterized by neuronal cell death and memory impairment. Corticosterone (CORT) is a glucocorticoid hormone produced by the hypothalamic-pituitary-adrenal axis in response to a stressful condition. Excessive stress and high CORT levels are known to cause neurotoxicity and aggravate various diseases, whereas mild stress and low CORT levels exert beneficial actions under pathophysiological conditions. However, the effects of mild stress on AD have not been clearly elucidated yet. In this study, the effects of low (3 and 30 nM) CORT concentration on Aβ25-35-induced neuro-toxicity in SH-SY5Y cells and underlying molecular mechanisms have been investigated. Cytotoxicity caused by Aβ25-35 was significantly inhibited by the low concentration of CORT treatment in the cells. Furthermore, CORT pretreatment significantly reduced Aβ25-35-mediated pro-apoptotic signals, such as increased Bim/Bcl-2 ratio and caspase-3 cleavage. Moreover, low concentration of CORT treatment inhibited the Aβ25-35-induced cyclooxygenase-2 and pro-inflammatory cytokine expressions, including tumor necrosis factor-α and interleukin-1β. Aβ25-35 resulted in intracellular accumulation of reactive oxygen species and lipid peroxidation, which were effectively reduced by the low CORT concentration. As a molecular mechanism, low CORT concentration activated the nuclear factor-erythroid 2-related factor 2, a redox-sensitive transcription factor mediating cellular defense and upregulating the expression of antioxidant enzymes, such as NAD(P)H:quinone oxidoreductase, glutamylcysteine synthetase, and manganese superoxide dismutase. These findings suggest that low CORT concentration exerts protective actions against Aβ25-35-induced neurotoxicity and might be used to treat and/or prevent AD.

Original languageEnglish
Pages (from-to)77-83
Number of pages7
JournalBiomolecules and Therapeutics
Volume32
Issue number1
DOIs
StatePublished - 2024

Keywords

  • Alzheimer’s disease
  • Beta-amyloid
  • Corticosterone
  • Inflammation
  • Neurotoxicity
  • Oxidative stress

Fingerprint

Dive into the research topics of 'Effects of Corticosterone on Beta-Amyloid-Induced Cell Death in SH-SY5Y Cells'. Together they form a unique fingerprint.

Cite this