TY - JOUR
T1 - Effects of formaldehyde to urea mole ratio on thermal curing behavior of urea-formaldehyde resin and properties of particleboard
AU - Park, Byung Dae
AU - Kang, Eun Chang
AU - Park, Jong Yong
PY - 2006/8/5
Y1 - 2006/8/5
N2 - As a part of abating the formaldehyde emission (FE) of urea-formaldehyde (UP) resin, this study was conducted to investigate the effects of formaldehyde to urea (F/U) mole ratio on thermal curing behavior of UF resins and properties of PB bonded with them. UF resins synthesized at different F/U mole ratios (i.e., 1.6, 1.4, 1.2, and 1.0) were used for the manufacture of PB. Thermal curing behavior of these UF resins was characterized using differential scanning calorimetry (DSC). As the F/U mole ratio decreases, the gel time, onset and peak temperatures, and heat of reaction (ΔH) increased, while the activation energy (Ea) and rate constant (k) were decreased. The amount of free formaldehyde of UF resin and FE of PB prepared decreased in parallel with decreasing the F/U mole ratio. The internal bond strength, thickness swelling, and water absorption of PB was slightly deteriorated with decreasing the F/U mole ratio of UF resins used. These results indicated that as the F/U mole ratio decreased, the FE of PB was greatly reduced at the expense of the reactivity of UF resin and slight deterioration of performance of PB prepared.
AB - As a part of abating the formaldehyde emission (FE) of urea-formaldehyde (UP) resin, this study was conducted to investigate the effects of formaldehyde to urea (F/U) mole ratio on thermal curing behavior of UF resins and properties of PB bonded with them. UF resins synthesized at different F/U mole ratios (i.e., 1.6, 1.4, 1.2, and 1.0) were used for the manufacture of PB. Thermal curing behavior of these UF resins was characterized using differential scanning calorimetry (DSC). As the F/U mole ratio decreases, the gel time, onset and peak temperatures, and heat of reaction (ΔH) increased, while the activation energy (Ea) and rate constant (k) were decreased. The amount of free formaldehyde of UF resin and FE of PB prepared decreased in parallel with decreasing the F/U mole ratio. The internal bond strength, thickness swelling, and water absorption of PB was slightly deteriorated with decreasing the F/U mole ratio of UF resins used. These results indicated that as the F/U mole ratio decreased, the FE of PB was greatly reduced at the expense of the reactivity of UF resin and slight deterioration of performance of PB prepared.
KW - Formaldehyde emission
KW - Formaldehyde to urea mole ratio
KW - Particleboard
KW - Thermal behavior
KW - Urea-formaldehyde resin
UR - http://www.scopus.com/inward/record.url?scp=33746046042&partnerID=8YFLogxK
U2 - 10.1002/app.23538
DO - 10.1002/app.23538
M3 - Article
AN - SCOPUS:33746046042
SN - 0021-8995
VL - 101
SP - 1787
EP - 1792
JO - Journal of Applied Polymer Science
JF - Journal of Applied Polymer Science
IS - 3
ER -