TY - JOUR
T1 - Electrocatalytic water treatment using carbon nanotube filters modified with metal oxides
AU - Yang, So Young
AU - Vecitis, Chad D.
AU - Park, Hyunwoong
N1 - Publisher Copyright:
© 2017, Springer-Verlag Berlin Heidelberg.
PY - 2019/1/21
Y1 - 2019/1/21
N2 - This study examined the electrocatalytic activity of multi-walled carbon nanotube (CNT) filters for remediation of aqueous phenol in a sodium sulfate electrolyte. CNT filters were loaded with antimony-doped tin oxide (Sb-SnO 2 ; SS) and bismuth- and antimony-codoped tin oxide (Bi-Sb-SnO 2 ; BSS) via electrosorption at 2 V for 1 h and then assembled into a flow-through batch reactor as anode–cathode couples with perforated titanium foils. The as-synthesized pristine CNT filters were composed of 50–60-nm-thick tubular carbons with smooth surfaces, whereas the tubes composing the SS-CNT and BSS-CNT filters were slightly thicker and bumpy, because they were coated with SS and BSS particles ~50 nm in size. Electrochemical characterization of the samples indicated a positive shift in the onset potential and a decrease in the current magnitude in the modified CNT filters due to passivation and oxidation inhibition of the bare CNT filters. These filters exhibited a similar adsorption capacity for phenol (5–8%), whereas loadings of SS and BSS enhanced the degradation rate of phenol by ~1.5 and 2.1 times, respectively. In particular, the total organic carbon removal performance and mineralization efficiency of the BSS-CNT filters were approximately twice those of the bare CNT filters. The BSS-CNT filters also exhibited an enhanced oxidation of ferrocyanide [Fe II (CN) 6 4− ], which was not adsorbed onto the CNT filters. The enhanced electrocatalytic performance of the modified CNT filters was attributed to an effective generation of OH radicals. The surfaces of the filters were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy.
AB - This study examined the electrocatalytic activity of multi-walled carbon nanotube (CNT) filters for remediation of aqueous phenol in a sodium sulfate electrolyte. CNT filters were loaded with antimony-doped tin oxide (Sb-SnO 2 ; SS) and bismuth- and antimony-codoped tin oxide (Bi-Sb-SnO 2 ; BSS) via electrosorption at 2 V for 1 h and then assembled into a flow-through batch reactor as anode–cathode couples with perforated titanium foils. The as-synthesized pristine CNT filters were composed of 50–60-nm-thick tubular carbons with smooth surfaces, whereas the tubes composing the SS-CNT and BSS-CNT filters were slightly thicker and bumpy, because they were coated with SS and BSS particles ~50 nm in size. Electrochemical characterization of the samples indicated a positive shift in the onset potential and a decrease in the current magnitude in the modified CNT filters due to passivation and oxidation inhibition of the bare CNT filters. These filters exhibited a similar adsorption capacity for phenol (5–8%), whereas loadings of SS and BSS enhanced the degradation rate of phenol by ~1.5 and 2.1 times, respectively. In particular, the total organic carbon removal performance and mineralization efficiency of the BSS-CNT filters were approximately twice those of the bare CNT filters. The BSS-CNT filters also exhibited an enhanced oxidation of ferrocyanide [Fe II (CN) 6 4− ], which was not adsorbed onto the CNT filters. The enhanced electrocatalytic performance of the modified CNT filters was attributed to an effective generation of OH radicals. The surfaces of the filters were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy.
KW - Carbon nanotubes
KW - Electrochemical filter
KW - Hybrids
KW - Metal oxides
KW - Reactive oxygen species
UR - http://www.scopus.com/inward/record.url?scp=85010977092&partnerID=8YFLogxK
U2 - 10.1007/s11356-017-8495-6
DO - 10.1007/s11356-017-8495-6
M3 - Article
C2 - 28132189
AN - SCOPUS:85010977092
SN - 0944-1344
VL - 26
SP - 1036
EP - 1043
JO - Environmental Science and Pollution Research
JF - Environmental Science and Pollution Research
IS - 2
ER -