Abstract
Multilayered CdTe/PSS films were prepared by the electrostatic self-assembly method in an aqueous medium. Positively-charged cadmium telluride (CdTe) nanoparticles and anionic polyelectrolyte, poly (sodium 4-styrene sulfonate) (PSS) were assembled alternately in order to build up a multilayered film structure. A linear proportion of absorbance to the number of bilayers suggests that an equal amount of CdTe was adsorbed after each dipping cycle, which resulted in the buildup of a homogenous film. The binding energies of elements (Cd and Te) in multilayered CdTe/PSS film shifted from those of the CdTe nanoparticles in the pure state. This result indicates that the interfacial electron densities were redistributed by the strong electrostatic interaction between the oppositely-charged CdTe and PSS. Electrochemical properties of the multilayered CdTe/PSS films were studied in detail by cyclic voltammetry (CV).
Original language | English |
---|---|
Pages (from-to) | 257-261 |
Number of pages | 5 |
Journal | Transactions on Electrical and Electronic Materials |
Volume | 15 |
Issue number | 5 |
DOIs | |
State | Published - 1 Oct 2014 |
Keywords
- CdTe
- Cyclic voltammetry
- Self-assembly
- Thin film