Abstract
We report the fabrication and the performance in photoelectrochemical water splitting of thin films of electrostatically sprayed nanotextured bismuth vanadate (BiVO4) pillars coated with thin ZnO/TiO2 passivation layers formed by atomic layer deposition. The thin ZnO and TiO2 layers deposited on the BiVO4 nanopillars formed a heterostructure that promoted electron–hole separation and the migration of electrons toward the ITO substrate. The photocurrent density (PCD) of the ZnO/TiO2 coated BiVO4 was 2.5 times higher (2.25 mA/cm2 at 1.2 V (versus Ag/AgCl)) than that of pristine BiVO4 (0.9 mA/cm2 at 1.2 V (versus Ag/AgCl)). We present incident/absorbed photon-to-current efficiency and electrochemical impedance measurements confirming that this improvement is a result of the heterojunction produced by the conformal ZnO/TiO2 coating and discuss the mechanism of this dramatic enhancement of PCD.
Original language | English |
---|---|
Pages (from-to) | 721-729 |
Number of pages | 9 |
Journal | Chemical Engineering Journal |
Volume | 333 |
DOIs | |
State | Published - 1 Feb 2018 |
Keywords
- Atomic layer deposition
- Bismuth vanadate nanopillar
- Heterostructure
- Photoanode
- Photocurrent density
- Water splitting