Energy-efficient radio-over-fiber system for next-generation cloud radio access networks

Bo Wang, Limei Peng, Pin Han Ho

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

The paper proposes a novel adaptive radio-over-fiber (RoF) system for next-generation cloud radio access network (C-RAN), aiming to optimize the operation cost in terms of power consumption while maintaining required data rate. By jointly considering the nonlinear distortion from Mach-Zehnder modulator (MZM) and high power amplifier (HPA) due to high peak-to-average-power ratio (PAPR) in the electronic domain, we first provide a 2×2 multiple-input mulitple-output orthogonal frequency division multiplexing (MIMO-OFDM) baseband model on electrical SNR (ESNR) for a single RoF transmission line. To take the modulation levels into consideration, we provide the optical signal to noise ratio (OSNR) analysis that jointly considers the electrical SNR (ESNR) model and the non-linear effect of the optical transmission. This optical SNR (OSNR) analysis result is further used in the subsequent power consumption model for both the downlink and uplink of the considered RoF transmission system. Case studies via simulation and numerical experiments are conducted to verify that the proposed RoF system not only can reach the lowest power and spectrum consumptions at same time, but also consumes considerably less power than current RoF system.

Original languageEnglish
Article number118
JournalEurasip Journal on Wireless Communications and Networking
Volume2019
Issue number1
DOIs
StatePublished - 1 Dec 2019

Keywords

  • Cloud radio access network (C-RAN)
  • Energy efficiency
  • Nonlinear distortion
  • Peak-to-average power ratio (PAPR)
  • Radio-over-Fiber (RoF)

Fingerprint

Dive into the research topics of 'Energy-efficient radio-over-fiber system for next-generation cloud radio access networks'. Together they form a unique fingerprint.

Cite this