TY - JOUR
T1 - Engineering a disulfide bond to stabilize the calcium-binding loop of activated protein C eliminates its anticoagulant but not its protective signaling properties
AU - Bae, Jong Sup
AU - Yang, Likui
AU - Manithody, Chandrashekhara
AU - Rezaie, Alireza R.
PY - 2007/3/23
Y1 - 2007/3/23
N2 - In addition to an anticoagulant activity, activated protein C (APC) also exhibits anti-inflammatory and cytoprotective properties. These properties may contribute to the beneficial effect of APC in treating severe sepsis patients. A higher incidence of bleeding because of its anticoagulant function has been found to be a major drawback of APC as an effective anti-inflammatory drug. In this study, we have prepared a protein C variant in which an engineered disulfide bond between two β-sheets stabilized the functionally critical Ca2+-binding 70-80 loop of the molecule. The 70-80 loop of this mutant no longer bound Ca2+, and the activation of the mutant by thrombin was enhanced 60-80-fold independently of thrombomodulin. The anticoagulant activity of the activated protein C mutant was nearly eliminated as determined by a plasma-based clotting assay. However, the endothelial protein C receptor- and protease-activated receptor-1-dependent protective signaling properties of the mutant were minimally altered as determined by staurosporine-induced endothelial cell apoptosis, thrombin-induced endothelial cell permeability, and tumor necrosis-α-mediated neutrophil adhesion and migration assays. These results suggest that the mutant lost its ability to interact with the procoagulant cofactors but not with the protective signaling molecules; thus this mutant provides an important tool for in vivo studies to examine the role of anticoagulant versus anti-inflammatory function of activated protein C.
AB - In addition to an anticoagulant activity, activated protein C (APC) also exhibits anti-inflammatory and cytoprotective properties. These properties may contribute to the beneficial effect of APC in treating severe sepsis patients. A higher incidence of bleeding because of its anticoagulant function has been found to be a major drawback of APC as an effective anti-inflammatory drug. In this study, we have prepared a protein C variant in which an engineered disulfide bond between two β-sheets stabilized the functionally critical Ca2+-binding 70-80 loop of the molecule. The 70-80 loop of this mutant no longer bound Ca2+, and the activation of the mutant by thrombin was enhanced 60-80-fold independently of thrombomodulin. The anticoagulant activity of the activated protein C mutant was nearly eliminated as determined by a plasma-based clotting assay. However, the endothelial protein C receptor- and protease-activated receptor-1-dependent protective signaling properties of the mutant were minimally altered as determined by staurosporine-induced endothelial cell apoptosis, thrombin-induced endothelial cell permeability, and tumor necrosis-α-mediated neutrophil adhesion and migration assays. These results suggest that the mutant lost its ability to interact with the procoagulant cofactors but not with the protective signaling molecules; thus this mutant provides an important tool for in vivo studies to examine the role of anticoagulant versus anti-inflammatory function of activated protein C.
UR - http://www.scopus.com/inward/record.url?scp=34247882129&partnerID=8YFLogxK
U2 - 10.1074/jbc.M610547200
DO - 10.1074/jbc.M610547200
M3 - Article
C2 - 17255099
AN - SCOPUS:34247882129
SN - 0021-9258
VL - 282
SP - 9251
EP - 9259
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 12
ER -