TY - JOUR
T1 - Enhancement of piezoelectric properties in KNN-based lead-free ceramics through controlled NaNbO3 seed addition and phase structure engineering
AU - Kim, Sumi
AU - Oh, Seong Uk
AU - Kim, Dokyum
AU - Lee, Jung A.
AU - Heo, Young Woo
AU - Lee, Joon Hyung
AU - Nahm, Sahn
N1 - Publisher Copyright:
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
PY - 2025/2
Y1 - 2025/2
N2 - This study investigates the effects of introducing 0–5 mol% NaNbO3 (NN) seeds on the structural, microstructural, dielectric, ferroelectric, and piezoelectric properties of KNN-based lead-free piezoelectric ceramics. All samples with the final composition 0.96[0.95(K0.52Na0.48NbO3) − 0.05LiSbO3] − 0.04SrZrO3–CuO (KNNLS–SZ–C) were sintered at 1060 °C for 6 h. X-ray diffraction analysis revealed a perovskite single phase for 0–5 mol% NN seed contents, with a multiphase coexistence of tetragonal, orthorhombic, and rhombohedral structures. As seed content increased from 0 to 3 mol%, the rhombohedral fraction increased while tetragonal and orthorhombic fractions decreased. SEM micrographs showed abnormal grain growth at 1–2 mol% seeds, transitioning to normal grain growth beyond 3 mol%. Optimal piezoelectric and electromechanical properties including d33 = 323 pC/N, kp = 0.39 were obtained at 3 mol% NN seed, attributed to the favorable multiphase structure fraction and moderate grain size. This work elucidates the interplay between NN seed addition, phase fraction distribution, and microstructural development in tuning the piezoelectric performance of these lead-free ceramics.
AB - This study investigates the effects of introducing 0–5 mol% NaNbO3 (NN) seeds on the structural, microstructural, dielectric, ferroelectric, and piezoelectric properties of KNN-based lead-free piezoelectric ceramics. All samples with the final composition 0.96[0.95(K0.52Na0.48NbO3) − 0.05LiSbO3] − 0.04SrZrO3–CuO (KNNLS–SZ–C) were sintered at 1060 °C for 6 h. X-ray diffraction analysis revealed a perovskite single phase for 0–5 mol% NN seed contents, with a multiphase coexistence of tetragonal, orthorhombic, and rhombohedral structures. As seed content increased from 0 to 3 mol%, the rhombohedral fraction increased while tetragonal and orthorhombic fractions decreased. SEM micrographs showed abnormal grain growth at 1–2 mol% seeds, transitioning to normal grain growth beyond 3 mol%. Optimal piezoelectric and electromechanical properties including d33 = 323 pC/N, kp = 0.39 were obtained at 3 mol% NN seed, attributed to the favorable multiphase structure fraction and moderate grain size. This work elucidates the interplay between NN seed addition, phase fraction distribution, and microstructural development in tuning the piezoelectric performance of these lead-free ceramics.
UR - https://www.scopus.com/pages/publications/85219626453
U2 - 10.1007/s10853-025-10676-1
DO - 10.1007/s10853-025-10676-1
M3 - Article
AN - SCOPUS:85219626453
SN - 0022-2461
VL - 60
SP - 3365
EP - 3377
JO - Journal of Materials Science
JF - Journal of Materials Science
IS - 7
ER -