TY - JOUR
T1 - Enhancing electrochemical performance by triggering a local structure distortion in lithium vanadium phosphate cathode for Li ion batteries
AU - Park, Hyunyoung
AU - Lee, Wontae
AU - Thangavel, Ranjth
AU - Oh, Woong
AU - Jin, Bong Soo
AU - Yoon, Won Sub
N1 - Publisher Copyright:
© 2022 The Royal Society of Chemistry.
PY - 2022
Y1 - 2022
N2 - The development of high-energy Li ion batteries (LIBs) with a long cycle life is essential for meeting the energy requirements in next-generation large-scale applications. Monoclinic Li3V2(PO4)3 has emerged as a promising cathode for high-energy LIBs owing to its robust three-dimensional structure, high working voltage (>4.0 V), and high theoretical capacity (197 mA h g−1) compared with LiFePO4. Recently, attempts have been made to improve the electrochemical performance by doping various elements, among which Ti4+ is considered to be promising. However, no in-depth studies have been conducted on the cause of performance improvement in Ti-doped Li3V2(PO4)3 materials, in terms of the structure, during electrochemical reactions. Here, we demonstrate that Ti doping triggers the distortion of the VO6 octahedron and expands the space composed of Li and O ions, enhancing Li ion diffusion. Moreover, the lattice mismatch is mitigated, suppressing incomplete phase transitions and enhancing structural reversibility. Furthermore, the distortion of VO6 becomes more severe at the end of charging after Ti doping, making “the S-shaped curve” clearer during the discharge process and leading to low overpotential and high discharge capacity. These findings provide valuable opportunities for understanding electrochemically induced phase distortions and possible approaches for utilizing the distortions in high-energy-voltage cathode materials for LIBs.
AB - The development of high-energy Li ion batteries (LIBs) with a long cycle life is essential for meeting the energy requirements in next-generation large-scale applications. Monoclinic Li3V2(PO4)3 has emerged as a promising cathode for high-energy LIBs owing to its robust three-dimensional structure, high working voltage (>4.0 V), and high theoretical capacity (197 mA h g−1) compared with LiFePO4. Recently, attempts have been made to improve the electrochemical performance by doping various elements, among which Ti4+ is considered to be promising. However, no in-depth studies have been conducted on the cause of performance improvement in Ti-doped Li3V2(PO4)3 materials, in terms of the structure, during electrochemical reactions. Here, we demonstrate that Ti doping triggers the distortion of the VO6 octahedron and expands the space composed of Li and O ions, enhancing Li ion diffusion. Moreover, the lattice mismatch is mitigated, suppressing incomplete phase transitions and enhancing structural reversibility. Furthermore, the distortion of VO6 becomes more severe at the end of charging after Ti doping, making “the S-shaped curve” clearer during the discharge process and leading to low overpotential and high discharge capacity. These findings provide valuable opportunities for understanding electrochemically induced phase distortions and possible approaches for utilizing the distortions in high-energy-voltage cathode materials for LIBs.
UR - http://www.scopus.com/inward/record.url?scp=85141926503&partnerID=8YFLogxK
U2 - 10.1039/d2ta06837k
DO - 10.1039/d2ta06837k
M3 - Article
AN - SCOPUS:85141926503
SN - 2050-7488
VL - 97-98
JO - Journal of Materials Chemistry A
JF - Journal of Materials Chemistry A
ER -