TY - JOUR
T1 - Enhancing the tensile capacity of no-slump high-strength high-ductility concrete
AU - Yuan, Tian Feng
AU - Lee, Jin Young
AU - Yoon, Young Soo
N1 - Publisher Copyright:
© 2019
PY - 2020/2
Y1 - 2020/2
N2 - The high shape-holding ability of no-slump concretes (NSC) allows is widely used in roller-compacted and prefabricated concrete. However, it is limited by its low strength properties, and low tensile properties, which lead to potential durability problem in prefabricated concrete. Therefore, this paper aims to investigate the synergy effect in tensile properties of no-slump high-strength high-ductility concrete (NSHSDC) based on polyethylene (PE) and steel fibers (SF). The compressive, flexural, and tensile strength of NSHSDC with three different water-to-binder ratios (w/b) reinforced by 0.0, 1.5 vol% of PE fiber were evaluated. The composites with 16.8% w/b were filtered out due to its poor mechanical properties. The reinforcement characteristics of compressive, flexural, and tensile strength between 16.2% and 17.2% w/b were then compared and analyzed. All composites exhibited a similar compressive strength (>120 MPa), NSHSDC hybrids with different fiber lengths exhibited a flexural strength, tensile strength, and tensile energy absorbing capacity higher than other composites at approximately 18.4%, 14.5%, and 5.4%, respectively. The composites with 17.2% w/b exhibited great mechanical properties than composites with 16.4% w/b; thus, the need for further analysis of its synergy assessment. The composites with 17.2% w/b exhibited a positive synergy and composite hybrids with different fiber lengths established a perfect synergy.
AB - The high shape-holding ability of no-slump concretes (NSC) allows is widely used in roller-compacted and prefabricated concrete. However, it is limited by its low strength properties, and low tensile properties, which lead to potential durability problem in prefabricated concrete. Therefore, this paper aims to investigate the synergy effect in tensile properties of no-slump high-strength high-ductility concrete (NSHSDC) based on polyethylene (PE) and steel fibers (SF). The compressive, flexural, and tensile strength of NSHSDC with three different water-to-binder ratios (w/b) reinforced by 0.0, 1.5 vol% of PE fiber were evaluated. The composites with 16.8% w/b were filtered out due to its poor mechanical properties. The reinforcement characteristics of compressive, flexural, and tensile strength between 16.2% and 17.2% w/b were then compared and analyzed. All composites exhibited a similar compressive strength (>120 MPa), NSHSDC hybrids with different fiber lengths exhibited a flexural strength, tensile strength, and tensile energy absorbing capacity higher than other composites at approximately 18.4%, 14.5%, and 5.4%, respectively. The composites with 17.2% w/b exhibited great mechanical properties than composites with 16.4% w/b; thus, the need for further analysis of its synergy assessment. The composites with 17.2% w/b exhibited a positive synergy and composite hybrids with different fiber lengths established a perfect synergy.
KW - No-slump high-strength high-ductility concrete
KW - Polyethylene fiber
KW - Steel fiber
KW - Synergy effect
UR - http://www.scopus.com/inward/record.url?scp=85075180647&partnerID=8YFLogxK
U2 - 10.1016/j.cemconcomp.2019.103458
DO - 10.1016/j.cemconcomp.2019.103458
M3 - Article
AN - SCOPUS:85075180647
SN - 0958-9465
VL - 106
JO - Cement and Concrete Composites
JF - Cement and Concrete Composites
M1 - 103458
ER -