Environmentally Friendly Methylcellulose-Based Binders for Active and Passive Dust Control

Taehee Lee, Sangsik Kim, Samuel Kim, Na Yeon Kwon, Sangchul Rho, Dong Soo Hwang, Minkyu Kim

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Particulate matter (PM) is an essential indicator to evaluate air pollution, threatening human health. Although PM control could be achieved by using a variety of polymeric materials, identifying effective and green materials remains elusive in dust control technology. Here, we have employed environmentally friendly cellulose modified by methyl side groups, such as methylcellulose (MC)-based polymers, and evaluated their PM reduction efficiency when utilized in active and passive dust control methods, such as dust suppressants and air filters, respectively. When 25 m/s wind was applied on soil treated by MC-based polymers, PM emissions were reduced 95% or 85% lower than the soil treated by only water or the other cellulose without methyl side groups. The MC-based polymer was also effectively suppressed mineral dust from a local copper mine in Arizona with approximately 50 times lower amounts than a synthetic polymer containing methyl side groups. Furthermore, when MC-based polymers have deposited on filters of commercial face masks, the average filtration efficiency improved to greater than 99% while maintaining airflow resistance. Our results present that environmentally friendly MC-based polymers can act as dust binders that effectively agglomerate air pollutants, preventing the PM emission from dust sources and the inhalation after being suspended in the air; thus, labeling them as essential materials for advanced active and passive dust control technology.

Original languageEnglish
Pages (from-to)50860-50869
Number of pages10
JournalACS applied materials & interfaces
Volume12
Issue number45
DOIs
StatePublished - 11 Nov 2020

Keywords

  • air filter
  • dust suppressant
  • hydroxyethyl methylcellulose
  • hydroxypropyl methylcellulose
  • methylcellulose
  • particulate matter

Fingerprint

Dive into the research topics of 'Environmentally Friendly Methylcellulose-Based Binders for Active and Passive Dust Control'. Together they form a unique fingerprint.

Cite this