Abstract
We demonstrate high-performance perovskite solar cells with excellent electron transport properties using a one-dimensional (1D) electron transport layer (ETL). The 1D array-based ETL is comprised of 1D SnO2 nanowires (NWs) array grown on a F:SnO2 transparent conducting oxide substrate and rutile TiO2 nanoshells epitaxially grown on the surface of the 1D SnO2 NWs. The optimized devices show more than 95% internal quantum yield at 750 nm, and a power conversion efficiency (PCE) of 14.2%. The high quantum yield is attributed to dramatically enhanced electron transport in the epitaxial TiO2 layer, compared to that in conventional nanoparticle-based mesoporous TiO2 (mp-TiO2) layers. In addition, the open space in the 1D array-based ETL increases the prevalence of uniform TiO2/perovskite junctions, leading to reproducible device performance with a high fill factor. This work offers a method to achieve reproducible, high-efficiency perovskite solar cells with high-speed electron transport.
Original language | English |
---|---|
Pages (from-to) | 15284-15290 |
Number of pages | 7 |
Journal | Nanoscale |
Volume | 7 |
Issue number | 37 |
DOIs | |
State | Published - 7 Oct 2015 |