TY - JOUR
T1 - Eu3+-doped fluoro-telluroborate glasses as red-emitting components for W-LEDs application
AU - Lakshminarayana, G.
AU - Wagh, Akshatha
AU - Kamath, Sudha D.
AU - Dahshan, A.
AU - Hegazy, H. H.
AU - Marzec, M.
AU - Kityk, I. V.
AU - Lee, Dong Eun
AU - Yoon, Jonghun
AU - Park, Taejoon
N1 - Publisher Copyright:
© 2019 Elsevier B.V.
PY - 2020/1
Y1 - 2020/1
N2 - From 0.1 up to 2.5 mol% Eu3+-doped fluro-telluroborate glasses as red light-emitting components for white-light-emitting diodes (WLEDs) were investigated. Non-periodicity in the atomic arrangements was studied through the XRD pattern. The photoluminescence (PL) spectra were recorded under blue light (464 nm) excitation and analyzed. All the PL spectra exhibit an intense peak at 612 nm for 5D0 → 7F2 transition, revealing their red photoemission. Optimal PL emissions were achieved for 1.0 mol% Eu3+-doped sample. The CIE chromaticity coordinates for all the glasses (x = ~0.69, y = ~0.30) fall within the red color region. The J‒O parameters (Ω2, Ω4) were calculated following the emission spectra of Eu3+-doped samples and the intensity parameters (Ω2>Ω4), as well as the high asymmetry ratio (R/O), indicate the low ionicity in all the studied glasses. Using the J-O parameters, several radiative features like total emission transition probability (AT), branching ratios (radiative (βR) & experimental (βexp)), stimulated emission cross-section (σP E), gain bandwidth (σP E × λeff), and optical gain (σP E × τrad) were evaluated. All the luminescence decay curves fit well to non-exponential function and decay times were decreased at Eu3+ concentration >0.5 mol%. The evaluated σP E = 19.684 × 10−21 cm2, βexp = 0.759, τexp = 1.325 m s, minimum non-radiative relaxation, WNR = 296/s, and 60.78% of quantum efficiency (η) for 1.0 mol% Eu3+-doped glass for 5D0 → 7F2 transition indicates its promising features for red light-emitting optical devices and also as a red component in WLEDs.
AB - From 0.1 up to 2.5 mol% Eu3+-doped fluro-telluroborate glasses as red light-emitting components for white-light-emitting diodes (WLEDs) were investigated. Non-periodicity in the atomic arrangements was studied through the XRD pattern. The photoluminescence (PL) spectra were recorded under blue light (464 nm) excitation and analyzed. All the PL spectra exhibit an intense peak at 612 nm for 5D0 → 7F2 transition, revealing their red photoemission. Optimal PL emissions were achieved for 1.0 mol% Eu3+-doped sample. The CIE chromaticity coordinates for all the glasses (x = ~0.69, y = ~0.30) fall within the red color region. The J‒O parameters (Ω2, Ω4) were calculated following the emission spectra of Eu3+-doped samples and the intensity parameters (Ω2>Ω4), as well as the high asymmetry ratio (R/O), indicate the low ionicity in all the studied glasses. Using the J-O parameters, several radiative features like total emission transition probability (AT), branching ratios (radiative (βR) & experimental (βexp)), stimulated emission cross-section (σP E), gain bandwidth (σP E × λeff), and optical gain (σP E × τrad) were evaluated. All the luminescence decay curves fit well to non-exponential function and decay times were decreased at Eu3+ concentration >0.5 mol%. The evaluated σP E = 19.684 × 10−21 cm2, βexp = 0.759, τexp = 1.325 m s, minimum non-radiative relaxation, WNR = 296/s, and 60.78% of quantum efficiency (η) for 1.0 mol% Eu3+-doped glass for 5D0 → 7F2 transition indicates its promising features for red light-emitting optical devices and also as a red component in WLEDs.
KW - CIE chromaticity coordinates
KW - Decay lifetimes
KW - Eu-doped fluoro-telluroborate glasses
KW - Luminescence features
KW - Radiative properties
KW - White LEDs
UR - http://www.scopus.com/inward/record.url?scp=85075829261&partnerID=8YFLogxK
U2 - 10.1016/j.optmat.2019.109555
DO - 10.1016/j.optmat.2019.109555
M3 - Article
AN - SCOPUS:85075829261
SN - 0925-3467
VL - 99
JO - Optical Materials
JF - Optical Materials
M1 - 109555
ER -