TY - JOUR
T1 - Evaluation of fouling in nanofiltration for desalination using a resistance-in-series model and optical coherence tomography
AU - Park, Jongkwan
AU - Lee, Sungyun
AU - You, Jeongyeop
AU - Park, Sanghun
AU - Ahn, Yujin
AU - Jung, Woonggyu
AU - Cho, Kyung Hwa
N1 - Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2018/11/15
Y1 - 2018/11/15
N2 - Resistance-in-series models have been applied to investigate fouling behavior. However, it is difficult to model the influence of morphology on fouling behavior because resistance is indirectly calculated from the water flux and transmembrane pressure. In this study, optical coherence tomography (OCT) was applied to evaluate the resistance of the fouling layer based on fouling morphology. Sodium alginate, humic acid, and bovine serum albumin (BSA) with high salts concentrations (conductivity: 23 mS/cm) were used as model foulants. At the same total fouling resistance, BSA showed the highest cake layer thickness (BSA (114.5 μm) > humic acid (53.5 μm) > sodium alginate (20.0 μm)). However, a different order was found for the cake layer resistance (BSA > sodium alginate > humic acid). This indicates that fouling thickness is not correlated with cake layer resistance. According to the Carman–Kozeny equation, fouling layer porosity decreased in the following order: humic acid (0.30) > BSA (0.21) > sodium alginate (0.20). In addition, we provided a specific value that was calculated using the ratio between the fouling thickness and cake layer resistance. The results show that alginic acid induced a stronger cake layer resistance, despite its thin fouling layer, whereas BSA showed a relatively low potential for inducing cake layer resistance. The results obtained in this study could be used for estimating and predicting fouling behavior.
AB - Resistance-in-series models have been applied to investigate fouling behavior. However, it is difficult to model the influence of morphology on fouling behavior because resistance is indirectly calculated from the water flux and transmembrane pressure. In this study, optical coherence tomography (OCT) was applied to evaluate the resistance of the fouling layer based on fouling morphology. Sodium alginate, humic acid, and bovine serum albumin (BSA) with high salts concentrations (conductivity: 23 mS/cm) were used as model foulants. At the same total fouling resistance, BSA showed the highest cake layer thickness (BSA (114.5 μm) > humic acid (53.5 μm) > sodium alginate (20.0 μm)). However, a different order was found for the cake layer resistance (BSA > sodium alginate > humic acid). This indicates that fouling thickness is not correlated with cake layer resistance. According to the Carman–Kozeny equation, fouling layer porosity decreased in the following order: humic acid (0.30) > BSA (0.21) > sodium alginate (0.20). In addition, we provided a specific value that was calculated using the ratio between the fouling thickness and cake layer resistance. The results show that alginic acid induced a stronger cake layer resistance, despite its thin fouling layer, whereas BSA showed a relatively low potential for inducing cake layer resistance. The results obtained in this study could be used for estimating and predicting fouling behavior.
KW - Desalination
KW - Membrane fouling
KW - Nanofiltration
KW - Optical coherence tomography
KW - Resistance-in-series model
UR - http://www.scopus.com/inward/record.url?scp=85048286055&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2018.06.041
DO - 10.1016/j.scitotenv.2018.06.041
M3 - Article
C2 - 29906726
AN - SCOPUS:85048286055
SN - 0048-9697
VL - 642
SP - 349
EP - 355
JO - Science of the Total Environment
JF - Science of the Total Environment
ER -