Abstract
Ge/RuO2 nanocomposites were successfully fabricated as anode materials for lithium-ion batteries using RuO2 nanosheets and Ge/GeO2 nanoparticles (NPs). X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) analyses showed that elemental Ge nanoparticles were distributed onto the rutile-type RuO2. Transmission electron microscopy images showed well-dispersed Ge nanoparticles embedded in rutile-type RuO2. The Ge/RuO2 nanocomposite maintained higher discharge capacities (471 mA h g−1) after the 90th cycle at 0.1 A g−1 than that (211 mA h g−1) of Ge/GeO2 nanoparticles. The Ge/RuO2 nanocomposite exhibited a higher capacity retention than Ge/GeO2 NPs. These results suggest that the well-dispersed Ge nanoparticles within RuO2 matrices enhance the cycle stability and capacity retention of the anode material.
Original language | English |
---|---|
Article number | 11766 |
Journal | International Journal of Molecular Sciences |
Volume | 23 |
Issue number | 19 |
DOIs | |
State | Published - Oct 2022 |
Keywords
- anode material
- germanium
- lithium-ion battery
- ruthenium oxide