Expansion of chromosome territories with chromatin decompaction in BAF53-depleted interphase cells

Kiwon Lee, Jin Kang Mi, Jin Kwon Su, Kim Kwon Yunhee, Woo Kim Ki, Jae Hwan Lim, Hyockman Kwon

Research output: Contribution to journalArticlepeer-review

27 Scopus citations

Abstract

Chromosomes are compartmentalized into discrete chromosome territories during interphase in mammalian cells. A chromosome territory is generated by the tendency of chromatin to occupy the smallest shell volume, which is determined by the polymeric properties and interactions of the internal meshwork of the chromatin fiber. Here, we show that BAF53 knockdown by small interfering RNA interference led to the expansion of chromosome territories. This was accompanied by a reduction in chromatin compaction, an increase in the micrococcal nuclease sensitivity of the chromatin, and an alteration in H3-K9 and H3-K79 dimethylation. Interestingly, the BAF53 knockdown cells suffer a cell cycle defect. Despite the significant irregularity and decompaction of the polynucleosomes isolated from the BAF53 knockdown cells, the chromatin loading of H1 and core histones remained unaltered, as did the nucleosome spacing. The histone hyperacetylation and down-regulation of BRG-1, mBrm, and Tip49, the catalytic components of the SWI/SNF complex and the TIP60 complex, respectively, did not expand chromosome territories. These results indicate that BAF53 contributes to the polymeric properties and/or the internal meshwork interactions of the chromatin fiber probably via a novel mechanism.

Original languageEnglish
Pages (from-to)4013-4023
Number of pages11
JournalMolecular Biology of the Cell
Volume18
Issue number10
DOIs
StatePublished - Oct 2007

Fingerprint

Dive into the research topics of 'Expansion of chromosome territories with chromatin decompaction in BAF53-depleted interphase cells'. Together they form a unique fingerprint.

Cite this