TY - JOUR
T1 - Exploring the photoelectrocatalytic behavior of free-standing TiO2 nanotube arrays on transparent conductive oxide electrodes
T2 - Irradiation direction vs. alignment direction
AU - Jeong, Hye Won
AU - Park, Kyu Jun
AU - Park, Yiseul
AU - Han, Dong Suk
AU - Park, Hyunwoong
N1 - Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2019/9/1
Y1 - 2019/9/1
N2 - Although one-dimensional TiO2 nanotube arrays (TNA) grown on Ti substrates via electrochemical anodization are extensively studied in photoelectrochemistry, the photo(electro)catalytic activity of TNA detached from the Ti substrates remains unexplored. Herein, we synthesize TNA samples with various pore sizes (40–100 nm) and tube lengths (4–15 μm) via two-step electrochemical anodization, and transfer them to transparent conducting oxide (i.e. fluorine-doped tin oxide; FTO) substrates in normal (n) alignment (front plane outward) and reverse (r) alignment (backplane outward). The front and back planes of the as-fabricated TNA film are the same based on X-ray diffraction (anatase structure), X-ray photoelectron spectroscopy (Ti and O), and UV–vis transmittance data, though the tubes are open in the front and closed in the back. Regardless of the direction of irradiation (SE: FTO → TNA vs. EE: TNA → FTO), longer tubes generate a higher photocurrent (Iph) due to the large light absorption. However, for the same alignment of TNA (either n- or r-TNA), SE irradiation leads to a very large Iph (e.g., nSE > nEE), whereas n-TNA consistently generates a larger Iph than r-TNA for a given irradiation direction (i.e., n > r). The photocatalytic decomposition of phenol follows the same tendency (n > r); however, the Faraday efficiency (based on the photocharge) is higher with EE (nEE 28%, rEE 20%) than SE (rSE 11%, nSE 7%) irradiation. These photoelectrochemical and photocatalytic behaviors are explained in terms of charge carrier generation (FTO/TNA vs. TNA/solution), dissimilar charge carrier transfer pathways (e− transfer through tube framework vs. h+ transfer via radial direction), and charge injection at the tube (open vs. clogged tube mouth)/solution interface. The time-resolved photoluminescence (TRPL) emission and incident photon-to-current efficiency (IPCE) are also studied to gain insight into the charge transfer kinetics.
AB - Although one-dimensional TiO2 nanotube arrays (TNA) grown on Ti substrates via electrochemical anodization are extensively studied in photoelectrochemistry, the photo(electro)catalytic activity of TNA detached from the Ti substrates remains unexplored. Herein, we synthesize TNA samples with various pore sizes (40–100 nm) and tube lengths (4–15 μm) via two-step electrochemical anodization, and transfer them to transparent conducting oxide (i.e. fluorine-doped tin oxide; FTO) substrates in normal (n) alignment (front plane outward) and reverse (r) alignment (backplane outward). The front and back planes of the as-fabricated TNA film are the same based on X-ray diffraction (anatase structure), X-ray photoelectron spectroscopy (Ti and O), and UV–vis transmittance data, though the tubes are open in the front and closed in the back. Regardless of the direction of irradiation (SE: FTO → TNA vs. EE: TNA → FTO), longer tubes generate a higher photocurrent (Iph) due to the large light absorption. However, for the same alignment of TNA (either n- or r-TNA), SE irradiation leads to a very large Iph (e.g., nSE > nEE), whereas n-TNA consistently generates a larger Iph than r-TNA for a given irradiation direction (i.e., n > r). The photocatalytic decomposition of phenol follows the same tendency (n > r); however, the Faraday efficiency (based on the photocharge) is higher with EE (nEE 28%, rEE 20%) than SE (rSE 11%, nSE 7%) irradiation. These photoelectrochemical and photocatalytic behaviors are explained in terms of charge carrier generation (FTO/TNA vs. TNA/solution), dissimilar charge carrier transfer pathways (e− transfer through tube framework vs. h+ transfer via radial direction), and charge injection at the tube (open vs. clogged tube mouth)/solution interface. The time-resolved photoluminescence (TRPL) emission and incident photon-to-current efficiency (IPCE) are also studied to gain insight into the charge transfer kinetics.
KW - Anodization
KW - Charge transfer
KW - Morphology
KW - Photocatalysis
KW - Photoelectrochemistry
UR - http://www.scopus.com/inward/record.url?scp=85058810812&partnerID=8YFLogxK
U2 - 10.1016/j.cattod.2018.12.014
DO - 10.1016/j.cattod.2018.12.014
M3 - Article
AN - SCOPUS:85058810812
SN - 0920-5861
VL - 335
SP - 319
EP - 325
JO - Catalysis Today
JF - Catalysis Today
ER -