Fabrication of a stretchable and patchable array of high performance micro-supercapacitors using a non-aqueous solvent based gel electrolyte

Geumbee Lee, Daeil Kim, Doyeon Kim, Sooyeoun Oh, Junyeong Yun, Jihyun Kim, Sang Soo Lee, Jeong Sook Ha

Research output: Contribution to journalArticlepeer-review

143 Scopus citations

Abstract

In this study, we report the fabrication of a stretchable and patchable array of micro-supercapacitors (MSCs) using a gel-type electrolyte of poly(methyl methacrylate)-propylene carbonate-lithium perchlorate. As electrodes, a layer-by-layer-assembled thin film of multi-walled carbon nanotubes with a top layer of Mn3O4 nanoparticles was used. The fabricated MSC maintained over 85% of its performance for 2 weeks in ambient air without encapsulation owing to the use of a non-aqueous solvent based gel electrolyte. Dry-transferred MSC arrays on a specially designed stretchable polymer substrate exhibited stable electrochemical performance under various deformations, including bending, twisting, both uniaxial and biaxial stretching up to 50%, and winding around the curved substrate. Furthermore, the encapsulated MSC array with a thin polymer film directly attached to skin maintained its electrochemical performance under repeated body movement, cycles of attachment-detachment, and even in water. This study clearly demonstrates a stretchable and patchable MSC array for practical use as an energy storage device that can be attached to the body for electronic function, even under wet conditions.

Original languageEnglish
Pages (from-to)1764-1774
Number of pages11
JournalEnergy and Environmental Science
Volume8
Issue number6
DOIs
StatePublished - 1 Jun 2015

Fingerprint

Dive into the research topics of 'Fabrication of a stretchable and patchable array of high performance micro-supercapacitors using a non-aqueous solvent based gel electrolyte'. Together they form a unique fingerprint.

Cite this