Abstract
We report the synthesis of manganese-doped nickel cobalt oxide (Mn-doped NiCo2O4) nanoparticles (NPs) by an efficient hydrothermal and subsequent calcination route. The material exhibits a homogeneous distribution of the Mn dopant and a battery-type behavior when tested as a supercapacitor electrode material. Mn-doped NiCo2O4 NPs show an excellent specific capacity of 417 C g-1 at a scan rate of 10 mV s-1 and 204.3 C g-1 at a current density of 1 A g-1 in a standard three-electrode configuration, ca. 152-466% higher than that of pristine NiCo2O4 or MnCo2O4. In addition, Mn-doped NiCo2O4 NPs showed an excellent capacitance retention of 99% after 1000 charge-discharge cycles at a current density of 2 A g-1. The symmetric solid-state supercapacitor device assembled using this material delivered an energy density of 0.87 μW h cm-2 at a power density of 25 μW h cm-2 and 0.39 μW h cm-2 at a high power density of 500 μW h cm-2. The cost-effective synthesis and high electrochemical performance suggest that Mn-doped NiCo2O4 is a promising material for supercapacitors.
Original language | English |
---|---|
Pages (from-to) | 6718-6729 |
Number of pages | 12 |
Journal | Dalton Transactions |
Volume | 49 |
Issue number | 20 |
DOIs | |
State | Published - 28 May 2020 |