Abstract
Let M be a finitely generated G-projective R-module over a PVMD R. We prove that M is projective if and only if the canonical map θ: M⊗RM* → HomR(HomR(M,M),R) is a surjective homomorphism. Particularly, if G-gldim(R) ≤ ∞ and Exti R(M,M) = 0 (i ≥ 1), then M is projective.
Original language | English |
---|---|
Pages (from-to) | 803-813 |
Number of pages | 11 |
Journal | Bulletin of the Korean Mathematical Society |
Volume | 57 |
Issue number | 3 |
DOIs | |
State | Published - 2020 |
Keywords
- Gorenstein projective module
- Projective module
- PVMD