TY - JOUR
T1 - First M87 Event Horizon Telescope Results. VI. the Shadow and Mass of the Central Black Hole
AU - The Event Horizon Telescope Collaboration
AU - Akiyama, Kazunori
AU - Alberdi, Antxon
AU - Alef, Walter
AU - Asada, Keiichi
AU - Azulay, Rebecca
AU - Baczko, Anne Kathrin
AU - Ball, David
AU - Baloković, Mislav
AU - Barrett, John
AU - Bintley, Dan
AU - Blackburn, Lindy
AU - Boland, Wilfred
AU - Bouman, Katherine L.
AU - Bower, Geoffrey C.
AU - Bremer, Michael
AU - Brinkerink, Christiaan D.
AU - Brissenden, Roger
AU - Britzen, Silke
AU - Broderick, Avery E.
AU - Broguiere, Dominique
AU - Bronzwaer, Thomas
AU - Byun, Do Young
AU - Carlstrom, John E.
AU - Chael, Andrew
AU - Chan, Chi Kwan
AU - Chatterjee, Shami
AU - Chatterjee, Koushik
AU - Chen, Ming Tang
AU - Chen, Yongjun
AU - Cho, Ilje
AU - Christian, Pierre
AU - Conway, John E.
AU - Cordes, James M.
AU - Crew, Geoffrey B.
AU - Cui, Yuzhu
AU - Davelaar, Jordy
AU - De Laurentis, Mariafelicia
AU - Deane, Roger
AU - Dempsey, Jessica
AU - Desvignes, Gregory
AU - Dexter, Jason
AU - Doeleman, Sheperd S.
AU - Eatough, Ralph P.
AU - Falcke, Heino
AU - Fish, Vincent L.
AU - Fomalont, Ed
AU - Fraga-Encinas, Raquel
AU - Friberg, Per
AU - Fromm, Christian M.
AU - Kim, Jae Young
N1 - Publisher Copyright:
© 2019. The American Astronomical Society..
PY - 2019/4/10
Y1 - 2019/4/10
N2 - We present measurements of the properties of the central radio source in M87 using Event Horizon Telescope data obtained during the 2017 campaign. We develop and fit geometric crescent models (asymmetric rings with interior brightness depressions) using two independent sampling algorithms that consider distinct representations of the visibility data. We show that the crescent family of models is statistically preferred over other comparably complex geometric models that we explore. We calibrate the geometric model parameters using general relativistic magnetohydrodynamic (GRMHD) models of the emission region and estimate physical properties of the source. We further fit images generated from GRMHD models directly to the data. We compare the derived emission region and black hole parameters from these analyses with those recovered from reconstructed images. There is a remarkable consistency among all methods and data sets. We find that >50% of the total flux at arcsecond scales comes from near the horizon, and that the emission is dramatically suppressed interior to this region by a factor >10, providing direct evidence of the predicted shadow of a black hole. Across all methods, we measure a crescent diameter of 42 ±3 μas and constrain its fractional width to be <0.5. Associating the crescent feature with the emission surrounding the black hole shadow, we infer an angular gravitational radius of GM/Dc 2 =3.8 ±0.4 μas. Folding in a distance measurement of gives a black hole mass of . This measurement from lensed emission near the event horizon is consistent with the presence of a central Kerr black hole, as predicted by the general theory of relativity.
AB - We present measurements of the properties of the central radio source in M87 using Event Horizon Telescope data obtained during the 2017 campaign. We develop and fit geometric crescent models (asymmetric rings with interior brightness depressions) using two independent sampling algorithms that consider distinct representations of the visibility data. We show that the crescent family of models is statistically preferred over other comparably complex geometric models that we explore. We calibrate the geometric model parameters using general relativistic magnetohydrodynamic (GRMHD) models of the emission region and estimate physical properties of the source. We further fit images generated from GRMHD models directly to the data. We compare the derived emission region and black hole parameters from these analyses with those recovered from reconstructed images. There is a remarkable consistency among all methods and data sets. We find that >50% of the total flux at arcsecond scales comes from near the horizon, and that the emission is dramatically suppressed interior to this region by a factor >10, providing direct evidence of the predicted shadow of a black hole. Across all methods, we measure a crescent diameter of 42 ±3 μas and constrain its fractional width to be <0.5. Associating the crescent feature with the emission surrounding the black hole shadow, we infer an angular gravitational radius of GM/Dc 2 =3.8 ±0.4 μas. Folding in a distance measurement of gives a black hole mass of . This measurement from lensed emission near the event horizon is consistent with the presence of a central Kerr black hole, as predicted by the general theory of relativity.
KW - black hole physics
KW - galaxies: individual (M87)
KW - gravitation
KW - techniques: high angular resolution
KW - techniques: interferometric
UR - http://www.scopus.com/inward/record.url?scp=85064706726&partnerID=8YFLogxK
U2 - 10.3847/2041-8213/ab1141
DO - 10.3847/2041-8213/ab1141
M3 - Article
AN - SCOPUS:85064706726
SN - 2041-8205
VL - 875
JO - Astrophysical Journal Letters
JF - Astrophysical Journal Letters
IS - 1
M1 - L6
ER -