Abstract
Flame retardant epoxy is closely related to the safety of a human's life against the surrounding fire threat. Flame retardant properties can be obtained by supplementing with additives, such as phosphorus compounds and nanomaterials, or synthesizing flame retardant monomers. The principle of improving flame retardancy is based on the capture of oxygen radicals and the formation of a char layer, which blocks flammable gases. This paper focuses on a flame retardant epoxy resin using naturally occurring tannic acid (TA) as a hardener, which is both an oxygen-radical quencher and a charring agent. TA is reacted with the commercially available diglycidyl ether of bisphenol A (DGEBA). The reaction between the epoxy ring of the DGEBA and multiple functional groups in TA is empirically demonstrated using dynamic scanning calorimetry (DSC) and Brillouin spectra. The most effective flame-retardant TA-DGEBA (TD) thermoset had an limiting oxygen index (LOI) value 46% higher than the control sample. This result suggests that TA-based epoxy resins could be promising flame-retardant polymers.
Original language | English |
---|---|
Pages (from-to) | 3858-3865 |
Number of pages | 8 |
Journal | ACS Sustainable Chemistry and Engineering |
Volume | 7 |
Issue number | 4 |
DOIs | |
State | Published - 18 Feb 2019 |
Keywords
- Biobased materials
- Epoxy resins
- Flame retardants
- Tannic acids