Abstract

Let R be a domain. It is proved that R is coherent when IF D(R) ≤ 1, and R is Noetherian when IP D(R) ≤ 1. Consequently, R is a G-Prüfer domain if and only if IF D(R) ≤ 1, if and only if wG-gldim(R) ≤ 1; and R is a G-Dedekind domain if and only if IP D(R) ≤ 1.

Original languageEnglish
Pages (from-to)1075-1081
Number of pages7
JournalBulletin of the Korean Mathematical Society
Volume57
Issue number4
DOIs
StatePublished - 2020

Keywords

  • G-Prüfer domain
  • IF D(R)
  • IP D(R)
  • wG-gldim(R)

Fingerprint

Dive into the research topics of 'Flat dimensions of injective modules over domains'. Together they form a unique fingerprint.

Cite this