Abstract
The dorsal striatum, with its functional microcircuits galore, serves as the primary gateway of the basal ganglia and is known to play a key role in implicit learning. Initially, excitatory inputs from the cortex and thalamus arrive on the direct and indirect pathways, where the precise flow of information is then regulated by local GABAergic interneurons. The balance of excitatory and inhibitory transmission in the dorsal striatum is modulated by neuromodulators such as dopamine and acetylcholine. Under pathophysiological states in the dorsal striatum, an alteration in excitatory and inhibitory transmission may underlie dysfunctional motor control. Here, we review the cellular connections and modulation of striatal microcircuits and propose that modulating the excitatory and inhibitory balance in synaptic transmission of the dorsal striatum is important for regulating locomotion.
Original language | English |
---|---|
Pages (from-to) | 21-28 |
Number of pages | 8 |
Journal | Learning and Memory |
Volume | 20 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2013 |