Functionalization of pristine graphene for the synthesis of covalent graphene-polyaniline nanocomposite

Jaehyeung Park, Xiaojian Yang, Dhanushka Wickramasinghe, Madanodaya Sundhoro, Nese Orbey, Kwok Fan Chow, Mingdi Yan

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Polyaniline (PANI) is one of the most studied conducting polymers owing to its high electrical conductivity, straightforward synthesis and stability. Graphene-supported PANI nanocomposite materials combine the superior physical properties of graphene, synergistically enhancing the performance of PANI as well as giving rise to new properties. Covalent nanocomposites have shown to give higher stability and better performance than their non-covalent counterparts, however, the covalent graphene-PANI nanocomposite are primarily prepared from graphene oxide. We report a new method to synthesize covalent graphene-PANI nanocomposites from pristine graphene. Using few-layer graphene (FLG) flakes as the model system, we first conjugated aniline to FLG via a perfluorophenyl azide (PFPA)-mediated coupling chemistry. A subsequent in situ polymerization of aniline gave polyaniline covalently grafted on the FLG surface. Characterization by FTIR, TEM, SEM, XPS, XRD and electrochemistry confirmed the successful conjugation of PANI to FLG. The grafting density of PANI was estimated by thermal analysis to be ∼26%. As the PFPA-mediated coupling chemistry is applicable to other carbon materials including carbon nanotubes and fullerene, the method developed in this work can be readily adapted to grow PANI on these materials.

Original languageEnglish
Pages (from-to)26486-26493
Number of pages8
JournalRSC Advances
Volume10
Issue number44
DOIs
StatePublished - 14 Jul 2020

Fingerprint

Dive into the research topics of 'Functionalization of pristine graphene for the synthesis of covalent graphene-polyaniline nanocomposite'. Together they form a unique fingerprint.

Cite this