TY - JOUR
T1 - Fursultiamine alleviates choroidal neovascularization by suppressing inflammation and metabolic reprogramming
AU - Do, Ji Yeon
AU - Kim, Juhee
AU - Kim, Mi Jin
AU - Lee, Jung Yi
AU - Park, So Young
AU - Yanai, Ryoji
AU - Lee, In Kyu
AU - Park, Sungmi
AU - Park, Dong Ho
N1 - Publisher Copyright:
Copyright 2020 The Authors.
PY - 2020/10
Y1 - 2020/10
N2 - PURPOSE. To assess the therapeutic effects of fursultiamine on choroidal neovascularization (CNV) through its modulation of inflammation and metabolic reprogramming in the retinal pigment epithelium (RPE). METHODS. The anti-angiogenic effects of fursultiamine were assessed by measuring vascular leakage and CNV lesion size in the laser-induced CNV mouse model. Inflammatory responses were evaluated by quantitative polymerase chain reaction, western blot, and ELISA in both CNV eye tissues and in vitro cell cultures using ARPE-19 cells or primary human RPE (hRPE) cells under lipopolysaccharide (LPS) treatment or hypoxia. Mitochondrial respiration was assessed by measuring oxygen consumption in ARPE-19 cells treated with LPS with or without fursultiamine, and lactate production was measured in ARPE-19 cells subjected to hypoxia with or without fursultiamine. RESULTS. In laser-induced CNV, fursultiamine significantly decreased vascular leakage and lesion size, as well as the numbers of both choroidal and retinal inflammatory cytokines, including IL-1β, IL-6, IL-8, and TNF-α. In LPS-treated ARPE-19 cells, fursultiamine decreased proinflammatory cytokine secretion and nuclear factor kappa B phosphorylation. Furthermore, fursultiamine suppressed LPS-induced upregulation of IL-6, IL-8, and monocyte chemoattractant protein-1 in a dose-dependent and time-dependent manner in primary hRPE cells. Interestingly, fursultiamine significantly enhanced mitochondrial respiration in the LPS-treated ARPE-19 cells. Additionally, fursultiamine attenuated hypoxia-induced aberrations, including lactate production and inhibitory phosphorylation of pyruvate dehydrogenase. Furthermore, fursultiamine attenuated hypoxia-induced VEGF secretion and mitochondrial fission in primary hRPE cells that were replicated in ARPE-19 cells. CONCLUSIONS. Our findings show that fursultiamine is a viable putative therapeutic for neovascular age-related macular degeneration by modulating the inflammatory response and metabolic reprogramming by enhancing mitochondrial respiration in the RPE.
AB - PURPOSE. To assess the therapeutic effects of fursultiamine on choroidal neovascularization (CNV) through its modulation of inflammation and metabolic reprogramming in the retinal pigment epithelium (RPE). METHODS. The anti-angiogenic effects of fursultiamine were assessed by measuring vascular leakage and CNV lesion size in the laser-induced CNV mouse model. Inflammatory responses were evaluated by quantitative polymerase chain reaction, western blot, and ELISA in both CNV eye tissues and in vitro cell cultures using ARPE-19 cells or primary human RPE (hRPE) cells under lipopolysaccharide (LPS) treatment or hypoxia. Mitochondrial respiration was assessed by measuring oxygen consumption in ARPE-19 cells treated with LPS with or without fursultiamine, and lactate production was measured in ARPE-19 cells subjected to hypoxia with or without fursultiamine. RESULTS. In laser-induced CNV, fursultiamine significantly decreased vascular leakage and lesion size, as well as the numbers of both choroidal and retinal inflammatory cytokines, including IL-1β, IL-6, IL-8, and TNF-α. In LPS-treated ARPE-19 cells, fursultiamine decreased proinflammatory cytokine secretion and nuclear factor kappa B phosphorylation. Furthermore, fursultiamine suppressed LPS-induced upregulation of IL-6, IL-8, and monocyte chemoattractant protein-1 in a dose-dependent and time-dependent manner in primary hRPE cells. Interestingly, fursultiamine significantly enhanced mitochondrial respiration in the LPS-treated ARPE-19 cells. Additionally, fursultiamine attenuated hypoxia-induced aberrations, including lactate production and inhibitory phosphorylation of pyruvate dehydrogenase. Furthermore, fursultiamine attenuated hypoxia-induced VEGF secretion and mitochondrial fission in primary hRPE cells that were replicated in ARPE-19 cells. CONCLUSIONS. Our findings show that fursultiamine is a viable putative therapeutic for neovascular age-related macular degeneration by modulating the inflammatory response and metabolic reprogramming by enhancing mitochondrial respiration in the RPE.
KW - Choroidal neovascularization
KW - Fursultiamine
KW - Inflammation
KW - Metabolic reprogramming
KW - Mitochondria
UR - http://www.scopus.com/inward/record.url?scp=85094931538&partnerID=8YFLogxK
U2 - 10.1167/IOVS.61.12.24
DO - 10.1167/IOVS.61.12.24
M3 - Article
C2 - 33107903
AN - SCOPUS:85094931538
SN - 0146-0404
VL - 61
JO - Investigative Ophthalmology and Visual Science
JF - Investigative Ophthalmology and Visual Science
IS - 12
M1 - 2770953
ER -