Abstract
We report the luminescence and energy transfer features in (B2O3)0.55-x(Li2O)0.30 (MgO)0.10(Gd2O3)0.05 (Sm2O3)x glasses, prepared via melt-quenching rout. By employing the Judd–Ofelt (JO) theory, the spectral parameters such as oscillator strengths, stimulated emission cross-sections, radiative transition probability and branching ratios are evaluated from the absorption and emission spectra. The dipole-dipole interaction as a dominant interaction mechanism is confirmed from Inokuti–Hirayama (IH) model. The luminescent color falls in the orange part of commission International de I'Eclaiage (CIE). The ultra-violet (UV) sensitization of visible emission of Sm3+ is analyzed by the photoluminescence (PL) emission spectra and the lifetime measurement. The Gd: 6P7/2–8S7/2 emission in UV range and the Sm3+:4G5/2 –6HJ luminescence at 598 nm were observed upon the excitation of Gd:4f level by λexc = 275 nm. Moreover, the impact of energy transfer on the donor-acceptor luminescence, quantum efficiency, and donor luminescence decay kinetics are investigated. It is found that efficient orange luminescence originates from Sm3+ emitting centers. These findings show that these as-prepared luminescent glasses are promising in orange LEDs and laser applications.
Original language | English |
---|---|
Article number | 110657 |
Journal | Optical Materials |
Volume | 111 |
DOIs | |
State | Published - Jan 2021 |
Keywords
- Borate glasses
- Energy transfer efficiency
- Gadolinium
- Samarium