Abstract
Emerging evidence of the potent immunosuppressive activity of mesenchymal stem cells (MSCs) by modulation of both innate and adaptive immune responses enables MSCs to be developed as a promising therapeutic modality for immune-related or inflammatory diseases. However, it is not clearly understood how MSCs exert their immunosuppressive effects on immune cells under inflammatory conditions. Using human bone marrow (BM)-derived clonal MSCs (hcMSCs), we obtained and analyzed a differentially expressed gene profile when stimulated with the inflammatory cytokines interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) to find novel candidate factors responsible for MSC immunomodulation. Microarray analysis showed that 5650 genes were upregulated and 5862 genes were downregulated with the cutoff of 2-fold expression change. Among these, the ICOSLG and STAT2 genes were drastically upregulated 173-fold and 154-fold, respectively. Reverse transcription-polymerase chain reaction analysis confirmed the microarray data. To evaluate whether their increased expression is related to MSC-mediated immunosuppression, siRNA-induced ICOSLG- or STAT2-knockdown hcMSCs were assessed for their T cell suppressive activity. We demonstrated that STAT2 but not ICOSLG is functionally involved in the immunosuppressive activity of hcMSCs as a novel regulator under inflammatory conditions. Gene ontology and pathway analyses further support the immunomodulatory function of hcMSCs when inflammatory stimulation was provided. Taken together, this study provides an informative genome-wide gene expression profile and molecular evidence for understanding the mechanisms underlying the modulation of immune cells by human BM-derived MSCs under inflammatory conditions.
Original language | English |
---|---|
Pages (from-to) | 131-139 |
Number of pages | 9 |
Journal | Gene |
Volume | 497 |
Issue number | 2 |
DOIs | |
State | Published - 15 Apr 2012 |
Keywords
- Immunosuppression
- Inflammation
- Mesenchymal stem cell
- Microarray
- STAT2