TY - JOUR
T1 - Genetic and phenotypic characterization of tetracycline-resistant Pasteurella multocida isolated from pigs
AU - Oh, Yoon Hee
AU - Moon, Dong Chan
AU - Lee, Young Ju
AU - Hyun, Bang Hun
AU - Lim, Suk Kyung
N1 - Publisher Copyright:
© 2019 Elsevier B.V.
PY - 2019/6
Y1 - 2019/6
N2 - Pasteurella multocida causes single or complex respiratory disease in pigs. Although antimicrobial therapy is the most effective treatment for porcine respiratory disease, P. multocida shows increased antimicrobial resistance in Korea. Therefore, we aimed to investigate the phenotypic and genotypic characterization of tetracycline-resistant P. multocida. Thirty-seven of 454 P. multocida isolates from South Korea between 2010 and 2016 were selected. Four tet genes [tet(B) (78.4%), tet(H) (16.2%), tet(C) (5.4%), and tet(O) (2.7%)] were observed. This is the first report of tet(C) in P. multocida. Various virulence factors were observed in both tetracycline-resistant and -susceptible P. multocida isolates. Genes encoding pmHAS and pfhA were more prevalent in tetracycline-resistant than in tetracycline-susceptible isolates. Some virulence factors exhibited association with serogroups. tadD and sodA were common in serogroup A, while hsf-l was significantly associated with serogroup D (p < 0.01). Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) results showed the genetic diversity of tetracycline-resistant P. multocida. MLST showed six different sequence types (ST), with clonal complex 13 encompassing 56.8% of the strains. PFGE was more efficient in differentiating the isolates, and 29 PFGE patterns of the strains were observed. By combining these methods, identical STs and PFGE patterns were observed in isolates from different farms, suggesting that transmission of antimicrobial-resistant P. multocida strains between farms might occur in a geographically discrete population. In future, epidemiological approaches and development of effective vaccines should focus on the major clonal lineages carrying the important virulence factors and frequently observed resistance genes to prevent the transmission and control the disease.
AB - Pasteurella multocida causes single or complex respiratory disease in pigs. Although antimicrobial therapy is the most effective treatment for porcine respiratory disease, P. multocida shows increased antimicrobial resistance in Korea. Therefore, we aimed to investigate the phenotypic and genotypic characterization of tetracycline-resistant P. multocida. Thirty-seven of 454 P. multocida isolates from South Korea between 2010 and 2016 were selected. Four tet genes [tet(B) (78.4%), tet(H) (16.2%), tet(C) (5.4%), and tet(O) (2.7%)] were observed. This is the first report of tet(C) in P. multocida. Various virulence factors were observed in both tetracycline-resistant and -susceptible P. multocida isolates. Genes encoding pmHAS and pfhA were more prevalent in tetracycline-resistant than in tetracycline-susceptible isolates. Some virulence factors exhibited association with serogroups. tadD and sodA were common in serogroup A, while hsf-l was significantly associated with serogroup D (p < 0.01). Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) results showed the genetic diversity of tetracycline-resistant P. multocida. MLST showed six different sequence types (ST), with clonal complex 13 encompassing 56.8% of the strains. PFGE was more efficient in differentiating the isolates, and 29 PFGE patterns of the strains were observed. By combining these methods, identical STs and PFGE patterns were observed in isolates from different farms, suggesting that transmission of antimicrobial-resistant P. multocida strains between farms might occur in a geographically discrete population. In future, epidemiological approaches and development of effective vaccines should focus on the major clonal lineages carrying the important virulence factors and frequently observed resistance genes to prevent the transmission and control the disease.
KW - Multilocus sequence typing
KW - Pasteurella multocida
KW - Pulsed-field gel electrophoresis
KW - Tetracycline resistance
KW - Virulence factors
UR - http://www.scopus.com/inward/record.url?scp=85065418260&partnerID=8YFLogxK
U2 - 10.1016/j.vetmic.2019.05.001
DO - 10.1016/j.vetmic.2019.05.001
M3 - Article
C2 - 31176403
AN - SCOPUS:85065418260
SN - 0378-1135
VL - 233
SP - 159
EP - 163
JO - Veterinary Microbiology
JF - Veterinary Microbiology
ER -