TY - JOUR
T1 - Gibberellins producing Bacillus methylotrophicus KE2 supports plant growth and enhances nutritional metabolites and food values of lettuce
AU - Radhakrishnan, Ramalingam
AU - Lee, In Jung
N1 - Publisher Copyright:
© 2016 Elsevier Masson SAS
PY - 2016/12/1
Y1 - 2016/12/1
N2 - The nutritional quality of green leafy vegetables can be enhanced by application of plant beneficial micro-organisms. The present study was aimed to increase the food values of lettuce leaves by bacterial treatment. We isolated bacterial strain KE2 from Kimchi food and identified as Bacillus methylotrophicus by phylogenetic analysis. The beneficial effect of B. methylotrophicus KE2 on plants was confirmed by increasing the percentage of seed germination of Lactuca sativa L., Cucumis melo L., Glycine max L. and Brassica juncea L. It might be the secretion of array of gibberellins (GA1, GA3, GA7, GA8, GA9, GA12, GA19, GA20, GA24, GA34 and GA53) and indole-acetic acid from B. methylotrophicus KE2. The mechanism of plant growth promotion via their secreted metabolites was confirmed by a significant increase of GA deficient mutant rice plant growth. Moreover, the bacterial association was favor to enhance shoot length, shoot fresh weight and leaf width of lettuce. The higher concentration of protein, amino acids (Asp, Thr, Ser, Glu, Gly, Ala, Leu, Tyr and His), gama-aminobutric acid and fructose was found in bacterial culture (KE2) applied plants. The macro and micro minerals such as K, Mg, Na, P, Fe, Zn and N were also detected as significantly higher quantities in bacteria treated plants than untreated control plants. In addition, the carotenoids and chlorophyll a were also increased in lettuce at bacterial inoculation. The results of this study suggest that B. methylotrophicus KE2 application to soil helps to increase the plant growth and food values of lettuce.
AB - The nutritional quality of green leafy vegetables can be enhanced by application of plant beneficial micro-organisms. The present study was aimed to increase the food values of lettuce leaves by bacterial treatment. We isolated bacterial strain KE2 from Kimchi food and identified as Bacillus methylotrophicus by phylogenetic analysis. The beneficial effect of B. methylotrophicus KE2 on plants was confirmed by increasing the percentage of seed germination of Lactuca sativa L., Cucumis melo L., Glycine max L. and Brassica juncea L. It might be the secretion of array of gibberellins (GA1, GA3, GA7, GA8, GA9, GA12, GA19, GA20, GA24, GA34 and GA53) and indole-acetic acid from B. methylotrophicus KE2. The mechanism of plant growth promotion via their secreted metabolites was confirmed by a significant increase of GA deficient mutant rice plant growth. Moreover, the bacterial association was favor to enhance shoot length, shoot fresh weight and leaf width of lettuce. The higher concentration of protein, amino acids (Asp, Thr, Ser, Glu, Gly, Ala, Leu, Tyr and His), gama-aminobutric acid and fructose was found in bacterial culture (KE2) applied plants. The macro and micro minerals such as K, Mg, Na, P, Fe, Zn and N were also detected as significantly higher quantities in bacteria treated plants than untreated control plants. In addition, the carotenoids and chlorophyll a were also increased in lettuce at bacterial inoculation. The results of this study suggest that B. methylotrophicus KE2 application to soil helps to increase the plant growth and food values of lettuce.
KW - Bacillus methylotrophicus KE2
KW - Gibberellins
KW - Lettuce
KW - Nutrition
KW - Seed germination
UR - http://www.scopus.com/inward/record.url?scp=84990181905&partnerID=8YFLogxK
U2 - 10.1016/j.plaphy.2016.09.018
DO - 10.1016/j.plaphy.2016.09.018
M3 - Article
C2 - 27721133
AN - SCOPUS:84990181905
SN - 0981-9428
VL - 109
SP - 181
EP - 189
JO - Plant Physiology and Biochemistry
JF - Plant Physiology and Biochemistry
ER -