Glaucomatous patterns in Frequency Doubling Technology (FDT) perimetry data identified by unsupervised machine learning classifiers

Christopher Bowd, Robert N. Weinreb, Madhusudhanan Balasubramanian, Intae Lee, Giljin Jang, Siamak Yousefi, Linda M. Zangwill, Felipe A. Medeiros, Christopher A. Girkin, Jeffrey M. Liebmann, Michael H. Goldbaum

Research output: Contribution to journalArticlepeer-review

39 Scopus citations

Fingerprint

Dive into the research topics of 'Glaucomatous patterns in Frequency Doubling Technology (FDT) perimetry data identified by unsupervised machine learning classifiers'. Together they form a unique fingerprint.

Engineering

Pharmacology, Toxicology and Pharmaceutical Science

Chemical Engineering