TY - JOUR
T1 - Growth-Promoting Endophytic Fungus (Stemphylium lycopersici) Ameliorates Salt Stress Tolerance in Maize by Balancing Ionic and Metabolic Status
AU - Ali, Raid
AU - Gul, Humaira
AU - Rauf, Mamoona
AU - Arif, Muhammad
AU - Hamayun, Muhammad
AU - Husna,
AU - Khilji, Sheza Ayaz
AU - Ud-Din, Aziz
AU - Sajid, Zahoor Ahmad
AU - Lee, In Jung
N1 - Publisher Copyright:
Copyright © 2022 Ali, Gul, Rauf, Arif, Hamayun, Husna, Khilji, Ud-Din, Sajid and Lee.
PY - 2022/7/11
Y1 - 2022/7/11
N2 - Climate change is a major cause of the world's food security problems, and soil salinity is a severe hazard for a variety of crops. The exploitation of endophytic fungi that are known to have a positive association with plant roots is preferred for improving plant growth, yield, and overall performance under salt stress. The current study thus rationalized to address how salt stress affected the growth, biochemical properties, antioxidant capacity, endogenous indole-3-acetic acid (IAA), and the ionic status of maize associated with endophytic fungus (Stemphylium lycopersici). According to the findings, salt stress reduced chlorophyll a and b, total chlorophyll, total protein, sugars, lipids, and endogenous IAA levels. Enhanced values of chlorophyll a/b ratio, carotenoids, secondary metabolites (phenol, flavonoids, and tannins), antioxidant enzyme activity (catalase, ascorbate peroxidase), proline, and lipid peroxidation were noticed in maize plants under salt stress. Increased ionic content of Na+, Cl−, Na+/K+, and Na+/Ca2+ ratio, as well as decreased Ca2+, K+, Mg2+, N, and P contents, were also found in salt-stressed maize plants. In comparison to the non-saline medium, endophytic association promoted the antioxidant enzyme activities (798.7 U/g protein; catalase activity, 106 U/g protein; ascorbate peroxidase activity), IAA content (3.47 mg/g FW), and phenolics and flavonoids (88 and 1.68 μg/g FW, respectively), and decreased MDA content (0.016 nmol/g FW), Na+ ion content (18 mg/g dry weight), Cl− ion (16.6 mg/g dry weight), and Na+/K+ (0.78) and Na+/Ca2+ (1.79) ratios, in maize plants under salt stress, whereas Ca2+, K+, Mg2+, N, and P contents were increased in maize plants associated with S. lycopersici under salt stress. Current research exposed the role of S. lycopersici as an effective natural salt stress reducer and maize growth promoter; hence, it can be used as a biofertilizer to ameliorate salt stress tolerance in crops along with better growth performance in saline regions.
AB - Climate change is a major cause of the world's food security problems, and soil salinity is a severe hazard for a variety of crops. The exploitation of endophytic fungi that are known to have a positive association with plant roots is preferred for improving plant growth, yield, and overall performance under salt stress. The current study thus rationalized to address how salt stress affected the growth, biochemical properties, antioxidant capacity, endogenous indole-3-acetic acid (IAA), and the ionic status of maize associated with endophytic fungus (Stemphylium lycopersici). According to the findings, salt stress reduced chlorophyll a and b, total chlorophyll, total protein, sugars, lipids, and endogenous IAA levels. Enhanced values of chlorophyll a/b ratio, carotenoids, secondary metabolites (phenol, flavonoids, and tannins), antioxidant enzyme activity (catalase, ascorbate peroxidase), proline, and lipid peroxidation were noticed in maize plants under salt stress. Increased ionic content of Na+, Cl−, Na+/K+, and Na+/Ca2+ ratio, as well as decreased Ca2+, K+, Mg2+, N, and P contents, were also found in salt-stressed maize plants. In comparison to the non-saline medium, endophytic association promoted the antioxidant enzyme activities (798.7 U/g protein; catalase activity, 106 U/g protein; ascorbate peroxidase activity), IAA content (3.47 mg/g FW), and phenolics and flavonoids (88 and 1.68 μg/g FW, respectively), and decreased MDA content (0.016 nmol/g FW), Na+ ion content (18 mg/g dry weight), Cl− ion (16.6 mg/g dry weight), and Na+/K+ (0.78) and Na+/Ca2+ (1.79) ratios, in maize plants under salt stress, whereas Ca2+, K+, Mg2+, N, and P contents were increased in maize plants associated with S. lycopersici under salt stress. Current research exposed the role of S. lycopersici as an effective natural salt stress reducer and maize growth promoter; hence, it can be used as a biofertilizer to ameliorate salt stress tolerance in crops along with better growth performance in saline regions.
KW - IAA
KW - Stemphylium lycopersici
KW - endophytic fungus
KW - maize
KW - proline
KW - salinity
UR - https://www.scopus.com/pages/publications/85134976055
U2 - 10.3389/fpls.2022.890565
DO - 10.3389/fpls.2022.890565
M3 - Article
AN - SCOPUS:85134976055
SN - 1664-462X
VL - 13
JO - Frontiers in Plant Science
JF - Frontiers in Plant Science
M1 - 890565
ER -