TY - JOUR
T1 - Hadoop-based intelligent care system (HICS)
T2 - Analytical approach for big data in IoT
AU - Rathore, M. Mazhar
AU - Paul, Anand
AU - Ahmad, Awais
AU - Anisetti, Marco
AU - Jeon, Gwanggil
N1 - Publisher Copyright:
© 2017 ACM.
PY - 2017/11
Y1 - 2017/11
N2 - The Internet of Things (IoT) is increasingly becoming a worldwide network of interconnected things that are uniquely addressable, via standard communication protocols. The use of IoT for continuous monitoring of public health is being rapidly adopted by various countries while generating a massive volume of heterogeneous, multisource, dynamic, and sparse high-velocity data. Handling such an enormous amount of high-speed medical data while integrating, collecting, processing, analyzing, and extracting knowledge constitutes a challenging task. On the other hand, most of the existing IoT devices do not cooperate with one another by using the same medium of communication. For this reason, it is a challenging task to develop healthcare applications for IoT that fulfill all user needs through real-Time monitoring of health parameters. Therefore, to address such issues, this article proposed a Hadoop-based intelligent care system (HICS) that demonstrates IoT-based collaborative contextual Big Data sharing among all of the devices in a healthcare system. In particular, the proposed system involves a network architecture with enhanced processing features for data collection generated by millions of connected devices. In the proposed system, various sensors, such as wearable devices, are attached to the human body and measure health parameters and transmit them to a primary mobile device (PMD). The collected data are then forwarded to intelligent building (IB) using the Internet where the data are thoroughly analyzed to identify abnormal and serious health conditions. Intelligent building consists of (1) a Big Data collection unit (used for data collection, filtration, and load balancing); (2) a Hadoop processing unit (HPU) (composed of Hadoop distributed file system (HDFS) and MapReduce); and (3) an analysis and decision unit. The HPU, analysis, and decision unit are equipped with a medical expert system, which reads the sensor data and performs actions in the case of an emergency situation. To demonstrate the feasibility and efficiency of the proposed system, we use publicly available medical sensory datasets and real-Time sensor traffic while identifying the serious health conditions of patients by using thresholds, statistical methods, and machine-learning techniques. The results show that the proposed system is very efficient and able to process high-speed WBAN sensory data in real time.
AB - The Internet of Things (IoT) is increasingly becoming a worldwide network of interconnected things that are uniquely addressable, via standard communication protocols. The use of IoT for continuous monitoring of public health is being rapidly adopted by various countries while generating a massive volume of heterogeneous, multisource, dynamic, and sparse high-velocity data. Handling such an enormous amount of high-speed medical data while integrating, collecting, processing, analyzing, and extracting knowledge constitutes a challenging task. On the other hand, most of the existing IoT devices do not cooperate with one another by using the same medium of communication. For this reason, it is a challenging task to develop healthcare applications for IoT that fulfill all user needs through real-Time monitoring of health parameters. Therefore, to address such issues, this article proposed a Hadoop-based intelligent care system (HICS) that demonstrates IoT-based collaborative contextual Big Data sharing among all of the devices in a healthcare system. In particular, the proposed system involves a network architecture with enhanced processing features for data collection generated by millions of connected devices. In the proposed system, various sensors, such as wearable devices, are attached to the human body and measure health parameters and transmit them to a primary mobile device (PMD). The collected data are then forwarded to intelligent building (IB) using the Internet where the data are thoroughly analyzed to identify abnormal and serious health conditions. Intelligent building consists of (1) a Big Data collection unit (used for data collection, filtration, and load balancing); (2) a Hadoop processing unit (HPU) (composed of Hadoop distributed file system (HDFS) and MapReduce); and (3) an analysis and decision unit. The HPU, analysis, and decision unit are equipped with a medical expert system, which reads the sensor data and performs actions in the case of an emergency situation. To demonstrate the feasibility and efficiency of the proposed system, we use publicly available medical sensory datasets and real-Time sensor traffic while identifying the serious health conditions of patients by using thresholds, statistical methods, and machine-learning techniques. The results show that the proposed system is very efficient and able to process high-speed WBAN sensory data in real time.
KW - Big data
KW - Healthcare
KW - Intelligent buil
KW - Iot
KW - PMD
UR - http://www.scopus.com/inward/record.url?scp=85040083277&partnerID=8YFLogxK
U2 - 10.1145/3108936
DO - 10.1145/3108936
M3 - Article
AN - SCOPUS:85040083277
SN - 1533-5399
VL - 18
JO - ACM Transactions on Internet Technology
JF - ACM Transactions on Internet Technology
IS - 1
M1 - 3108936
ER -