TY - JOUR
T1 - Halo-tolerant rhizospheric Arthrobacter woluwensis AK1 mitigates salt stress and induces physio-hormonal changes and expression of GmST1 and GmLAX3 in soybean
AU - Khan, Muhammad Aaqil
AU - Ullah, Ihsan
AU - Waqas, Muhammad
AU - Hamayun, Muhammad
AU - Khan, Abdul Latif
AU - Asaf, Sajjad
AU - Kang, Sang Mo
AU - Kim, Kyung Min
AU - Jan, Rahmatullah
AU - Lee, In Jung
N1 - Publisher Copyright:
© 2018, Springer Science+Business Media B.V., part of Springer Nature.
PY - 2019/1/15
Y1 - 2019/1/15
N2 - In the present study rhizospheric bacteria were isolated from sand dune-dwelling Artemisia princeps, Chenopodium ficifolium, Oenothera biennis, and Echinochloa crus-galli and evaluated the ability of the bacterial isolates to produce jasmonic acid (JA) and abscisic acid (ABA) under NaCl-induced salt stress. We observed that 7 of 126 bacterial isolates were capable of producing siderophores, gibberellic acid (GA), indole-3-acetic acid (IAA), phosphate solubilisation, organic acids e.g., quinic acid, succinic acid, acetic acid and butyric acid. A bioassay of the seven selected isolates on rice showed that the isolate AK1 significantly promoted rice growth. Moreover, AK1 produced IAA and ABA in broth spiked with elevated levels of NaCl (100 mM, 200 mM, 300 mM, and 400 mM). The isolate AK1 was further investigated for plant growth promotion and mitigation of NaCl-induced salt stress in soybean grown under 100 mM, 200 mM, and 300 mM stress. Application of AK1 upregulated the expression of GmLAXs, and GmST genes in plants exposed to salt stress as compared to uninoculated plants. Interestingly, the bacteria-treated soybean showed significant increase in growth attributes with or without salinity stress. The endogenous ABA and JA level of inoculated soybean plants declined under elevated salt stress, thus showing an enhanced stress mitigation. A similar ameliorative trend was observed for total proteins, polyphenol oxidase, and peroxidase activity under saline conditions. The isolate AK1 was identified as Arthrobacter woluwensis AK1 based on its 16S rDNA gene sequencing and subsequent phylogenetic analysis.
AB - In the present study rhizospheric bacteria were isolated from sand dune-dwelling Artemisia princeps, Chenopodium ficifolium, Oenothera biennis, and Echinochloa crus-galli and evaluated the ability of the bacterial isolates to produce jasmonic acid (JA) and abscisic acid (ABA) under NaCl-induced salt stress. We observed that 7 of 126 bacterial isolates were capable of producing siderophores, gibberellic acid (GA), indole-3-acetic acid (IAA), phosphate solubilisation, organic acids e.g., quinic acid, succinic acid, acetic acid and butyric acid. A bioassay of the seven selected isolates on rice showed that the isolate AK1 significantly promoted rice growth. Moreover, AK1 produced IAA and ABA in broth spiked with elevated levels of NaCl (100 mM, 200 mM, 300 mM, and 400 mM). The isolate AK1 was further investigated for plant growth promotion and mitigation of NaCl-induced salt stress in soybean grown under 100 mM, 200 mM, and 300 mM stress. Application of AK1 upregulated the expression of GmLAXs, and GmST genes in plants exposed to salt stress as compared to uninoculated plants. Interestingly, the bacteria-treated soybean showed significant increase in growth attributes with or without salinity stress. The endogenous ABA and JA level of inoculated soybean plants declined under elevated salt stress, thus showing an enhanced stress mitigation. A similar ameliorative trend was observed for total proteins, polyphenol oxidase, and peroxidase activity under saline conditions. The isolate AK1 was identified as Arthrobacter woluwensis AK1 based on its 16S rDNA gene sequencing and subsequent phylogenetic analysis.
KW - Antioxidant activities
KW - Defence hormones
KW - Salinity stress
KW - Sand dunes
KW - Soybean
KW - plant growth-promoting rhizobacteria (PGPR)
UR - http://www.scopus.com/inward/record.url?scp=85048035572&partnerID=8YFLogxK
U2 - 10.1007/s13199-018-0562-3
DO - 10.1007/s13199-018-0562-3
M3 - Article
AN - SCOPUS:85048035572
SN - 0334-5114
VL - 77
SP - 9
EP - 21
JO - Symbiosis
JF - Symbiosis
IS - 1
ER -