TY - JOUR
T1 - Harnessing and storing visible light using a heterojunction of WO3 and CdS for sunlight-free catalysis
AU - Kim, Seonghun
AU - Park, Yiseul
AU - Kim, Wooyul
AU - Park, Hyunwoong
N1 - Publisher Copyright:
© The Royal Society of Chemistry and Owner Societies 2016.
PY - 2016
Y1 - 2016
N2 - CdS and WO3 (CdS/WO3) bilayer film electrodes are fabricated to harness solar visible light (λ > 420 nm) and store photogenerated electrons for possible use during periods of unavailable sunlight. The overall film thickness is approximately 50-60 μm, while the CdS underlayer is slightly thinner than WO3 owing to a packing effect. The energetics of CdS and WO3 determined by optical and electrochemical analyses enables cascaded electron transfer from CdS to WO3. The open circuit potential (EOCP) of CdS/WO3 under visible light (approximately -0.35 V vs. SCE) is nearly maintained even in the absence of light, with a marginal decrease (∼0.15 V) in ∼20 h of darkness. Neither CdS nor WO3 alone exhibits such behavior. The electron lifetimes (τ) of CdS and WO3 are each less than 100 s, whereas coupling of the two increases τ to ∼2500 s at the EOCP. In the absence of dissolved O2, τ further increases, suggesting that O2 is the primary electron acceptor. In spite of oxic conditions, CdS/WO3 is capable of continuously reducing Cr6+ to Cr3+ and Ag+ to Ag0 after removal of visible light. The number of utilized (i.e., stored) electrons in the reductions of Cr6+ and Ag+ are estimated to be ∼1.08 × 1017 and ∼0.87 × 1017, respectively. The primary role of CdS is to be a visible-light absorber in the 420-565 nm wavelength range, transferring the photogenerated electrons to WO3. The electrons stored in WO3 are gradually released to electron acceptors with suitable redox potentials.
AB - CdS and WO3 (CdS/WO3) bilayer film electrodes are fabricated to harness solar visible light (λ > 420 nm) and store photogenerated electrons for possible use during periods of unavailable sunlight. The overall film thickness is approximately 50-60 μm, while the CdS underlayer is slightly thinner than WO3 owing to a packing effect. The energetics of CdS and WO3 determined by optical and electrochemical analyses enables cascaded electron transfer from CdS to WO3. The open circuit potential (EOCP) of CdS/WO3 under visible light (approximately -0.35 V vs. SCE) is nearly maintained even in the absence of light, with a marginal decrease (∼0.15 V) in ∼20 h of darkness. Neither CdS nor WO3 alone exhibits such behavior. The electron lifetimes (τ) of CdS and WO3 are each less than 100 s, whereas coupling of the two increases τ to ∼2500 s at the EOCP. In the absence of dissolved O2, τ further increases, suggesting that O2 is the primary electron acceptor. In spite of oxic conditions, CdS/WO3 is capable of continuously reducing Cr6+ to Cr3+ and Ag+ to Ag0 after removal of visible light. The number of utilized (i.e., stored) electrons in the reductions of Cr6+ and Ag+ are estimated to be ∼1.08 × 1017 and ∼0.87 × 1017, respectively. The primary role of CdS is to be a visible-light absorber in the 420-565 nm wavelength range, transferring the photogenerated electrons to WO3. The electrons stored in WO3 are gradually released to electron acceptors with suitable redox potentials.
UR - http://www.scopus.com/inward/record.url?scp=84982747255&partnerID=8YFLogxK
U2 - 10.1039/c6pp00091f
DO - 10.1039/c6pp00091f
M3 - Article
AN - SCOPUS:84982747255
SN - 1474-905X
VL - 15
SP - 1006
EP - 1011
JO - Photochemical and Photobiological Sciences
JF - Photochemical and Photobiological Sciences
IS - 8
ER -