Abstract
Background and Aims: Nuclear targeting of bacterial proteins has a significant impact on host cell pathology. Helicobacter pylori have many nuclear targeting proteins that translocate into the nucleus of host cells. H. pylori HP0425, annotated as hypothetical, has a nuclear localization signal (NLS) sequence, but its function has not been demonstrated. The aim of this experiment was to address the nuclear translocation of HP0425 and determine the effect of HP0425 pathology on host cells. Materials and Methods: To investigate the nuclear localization of HP0425, it was expressed in AGS and MKN-1 cells as a GFP fusion protein (pEGFP-HP0425), and its localization was analyzed by confocal microscopy. Recombinant HP0425 (rHP0425) protein was overproduced as a GST fusion protein in Escherichia coli and purified by glutathione-affinity column chromatography. Purified rHP0425 was examined for cytotoxicity and DNase activity. Results: The pEGFP-HP0425 fluorescence was expressed in the nucleus and cytosol fraction of cells, while it was localized in the cytoplasm in the negative control. This protein exhibited DNase activity under various conditions, with the highest DNase activity in the presence of manganese. In addition, the rHP0425 protein efficiently decreased cell viability in a concentration-dependent manner. Conclusions: These results suggest that HP0425 carrying a nuclear localization signal sequence translocates into the nucleus of host cells and degrades genomic DNA by DNase I-like enzymatic activity, which is a new pathogenic strategy of H. pylori in the host.
Original language | English |
---|---|
Pages (from-to) | 218-225 |
Number of pages | 8 |
Journal | Helicobacter |
Volume | 21 |
Issue number | 3 |
DOIs | |
State | Published - 1 Jun 2016 |
Keywords
- DNase I-like activity
- H. pylori
- HP0425
- NLS sequence