Hierarchical Motion Planning and Offline Robust Model Predictive Control for Autonomous Vehicles

Hung Duy Nguyen, Minh Nhat Vu, Nguyen Ngoc Nam, Kyoungseok Han

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Driving vehicles in complex scenarios under harsh conditions is the biggest challenge for autonomous vehicles (AVs). To address this issue, we propose hierarchical motion planning and robust control strategy using the front active steering system in complex scenarios with various slippery road adhesion coefficients while considering vehicle uncertain parameters. Behaviors of human vehicles (HVs) are considered and modeled in the form of a car-following model via the Intelligent Driver Model (IDM). Then, in the upper layer, the motion planner first generates an optimal trajectory by using the artificial potential field (APF) algorithm to formulate any surrounding objects, e.g., road marks, boundaries, and static/dynamic obstacles. To track the generated optimal trajectory, in the lower layer, an offline-constrained output feedback robust model predictive control (RMPC) is employed for the linear parameter varying (LPV) system by applying linear matrix inequality (LMI) optimization method that ensures the robustness against the model parameter uncertainties. Furthermore, by augmenting the system model, our proposed approach, called offline RMPC, achieves outstanding efficiency compared to three existing RMPC approaches, e.g., offset-offline RMPC, online RMPC, and offline RMPC without an augmented model (offline RMPC w/o AM), in both improving computing time and reducing input vibrations.

Original languageEnglish
Title of host publication2024 American Control Conference, ACC 2024
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4936-4941
Number of pages6
ISBN (Electronic)9798350382655
DOIs
StatePublished - 2024
Event2024 American Control Conference, ACC 2024 - Toronto, Canada
Duration: 10 Jul 202412 Jul 2024

Publication series

NameProceedings of the American Control Conference
ISSN (Print)0743-1619

Conference

Conference2024 American Control Conference, ACC 2024
Country/TerritoryCanada
CityToronto
Period10/07/2412/07/24

Fingerprint

Dive into the research topics of 'Hierarchical Motion Planning and Offline Robust Model Predictive Control for Autonomous Vehicles'. Together they form a unique fingerprint.

Cite this