TY - JOUR
T1 - High Capacity Adsorption—Dominated Potassium and Sodium Ion Storage in Activated Crumpled Graphene
AU - Lee, Byeongyong
AU - Kim, Myeongjin
AU - Kim, Sunkyung
AU - Nanda, Jagjit
AU - Kwon, Seok Joon
AU - Jang, Hee Dong
AU - Mitlin, David
AU - Lee, Seung Woo
N1 - Publisher Copyright:
© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2020/5/1
Y1 - 2020/5/1
N2 - Structurally and chemically defective activated-crumbled graphene (A-CG) is employed to achieve unique synergy of large reversible potassium (K) and sodium (Na) ion storage capacity with fast charging and extended cyclability. A-CG synthesis consists of low temperature spraying of graphene oxide slurry, followed by partial reduction annealing and air activation. For K storage, the reversible capacities are 340 mAh g−1 at 0.04 A g−1, 261 mAh g−1 at 0.5 A g−1, and 210 mAh g−1 at 2 A g−1. For Na storage, the reversible capacities are 280 mAh g−1 at 0.04 A g−1, 191 mAh g−1 at 0.5 A g−1, and 151 mAh g−1 at 2 A g−1. A-CG shows a stable intermediate rate (0.5 Ag−1) cycling with both K and Na, with minimal fade after 2800 and 8000 cycles. These are among the most favorable capacity—rate capability—cyclability combinations recorded for potassium-ion battery and sodium-ion battery carbons. Electroanalytical studies (cyclic voltammetry, galvanostatic intermittent titration technique, b-value) and density functional theory (DFT) reveal that enhanced electrochemical performance originates from ion adsorption at various defects, such as Stone–Wales defects. Moreover, DFT highlights enhanced thermodynamic stability of A-CG with adsorbed K versus with adsorbed Na, explaining the unexpected higher reversible capacity with the former.
AB - Structurally and chemically defective activated-crumbled graphene (A-CG) is employed to achieve unique synergy of large reversible potassium (K) and sodium (Na) ion storage capacity with fast charging and extended cyclability. A-CG synthesis consists of low temperature spraying of graphene oxide slurry, followed by partial reduction annealing and air activation. For K storage, the reversible capacities are 340 mAh g−1 at 0.04 A g−1, 261 mAh g−1 at 0.5 A g−1, and 210 mAh g−1 at 2 A g−1. For Na storage, the reversible capacities are 280 mAh g−1 at 0.04 A g−1, 191 mAh g−1 at 0.5 A g−1, and 151 mAh g−1 at 2 A g−1. A-CG shows a stable intermediate rate (0.5 Ag−1) cycling with both K and Na, with minimal fade after 2800 and 8000 cycles. These are among the most favorable capacity—rate capability—cyclability combinations recorded for potassium-ion battery and sodium-ion battery carbons. Electroanalytical studies (cyclic voltammetry, galvanostatic intermittent titration technique, b-value) and density functional theory (DFT) reveal that enhanced electrochemical performance originates from ion adsorption at various defects, such as Stone–Wales defects. Moreover, DFT highlights enhanced thermodynamic stability of A-CG with adsorbed K versus with adsorbed Na, explaining the unexpected higher reversible capacity with the former.
KW - carbon anodes
KW - ion intercalation
KW - potassium ion batteries
KW - sodium ion batteries
UR - http://www.scopus.com/inward/record.url?scp=85084923724&partnerID=8YFLogxK
U2 - 10.1002/aenm.201903280
DO - 10.1002/aenm.201903280
M3 - Article
AN - SCOPUS:85084923724
SN - 1614-6832
VL - 10
JO - Advanced Energy Materials
JF - Advanced Energy Materials
IS - 17
M1 - 1903280
ER -