TY - JOUR
T1 - High-Movement Human Segmentation in Video Using Adaptive N-Frames Ensemble
AU - Kim, Yong Woon
AU - Byun, Yung Cheol
AU - Han, Dong Seog
AU - Dominic, Dalia
AU - Cyriac, Sibu
N1 - Publisher Copyright:
© 2022 Tech Science Press. All rights reserved.
PY - 2022
Y1 - 2022
N2 - A wide range of camera apps and online video conferencing services support the feature of changing the background in real-time for aesthetic, privacy, and security reasons. Numerous studies show that the Deep-Learning (DL) is a suitable option for human segmentation, and the ensemble of multiple DL-based segmentation models can improve the segmentation result. However, these approaches are not as effective when directly applied to the image segmentation in a video. This paper proposes an Adaptive N-Frames Ensemble (AFE) approach for high-movement human segmentation in a video using an ensemble of multiple DL models. In contrast to an ensemble, which executes multiple DL models simultaneously for every single video frame, the proposed AFE approach executes only a single DL model upon a current video frame. It combines the segmentation outputs of previous frames for the final segmentation output when the frame difference is less than a particular threshold. Our method employs the idea of the N-Frames Ensemble (NFE) method, which uses the ensemble of the image segmentation of a current video frame and previous video frames. However, NFE is not suitable for the segmentation of fast-moving objects in a video nor a video with low frame rates. The proposed AFE approach addresses the limitations of the NFE method. Our experiment uses three human segmentation models, namely Fully Convolutional Network (FCN), DeepLabv3, and Mediapipe. We evaluated our approach using 1711 videos of the TikTok50f dataset with a single-person view. The TikTok50f dataset is a reconstructed version of the publicly available TikTok dataset by cropping, resizing and dividing it into videos having 50 frames each. This paper compares the proposed AFE with single models and the Two-Models Ensemble, as well as the NFE models. The experiment results show that the proposed AFE is suitable for low-movement as well as high-movement human segmentation in a video.
AB - A wide range of camera apps and online video conferencing services support the feature of changing the background in real-time for aesthetic, privacy, and security reasons. Numerous studies show that the Deep-Learning (DL) is a suitable option for human segmentation, and the ensemble of multiple DL-based segmentation models can improve the segmentation result. However, these approaches are not as effective when directly applied to the image segmentation in a video. This paper proposes an Adaptive N-Frames Ensemble (AFE) approach for high-movement human segmentation in a video using an ensemble of multiple DL models. In contrast to an ensemble, which executes multiple DL models simultaneously for every single video frame, the proposed AFE approach executes only a single DL model upon a current video frame. It combines the segmentation outputs of previous frames for the final segmentation output when the frame difference is less than a particular threshold. Our method employs the idea of the N-Frames Ensemble (NFE) method, which uses the ensemble of the image segmentation of a current video frame and previous video frames. However, NFE is not suitable for the segmentation of fast-moving objects in a video nor a video with low frame rates. The proposed AFE approach addresses the limitations of the NFE method. Our experiment uses three human segmentation models, namely Fully Convolutional Network (FCN), DeepLabv3, and Mediapipe. We evaluated our approach using 1711 videos of the TikTok50f dataset with a single-person view. The TikTok50f dataset is a reconstructed version of the publicly available TikTok dataset by cropping, resizing and dividing it into videos having 50 frames each. This paper compares the proposed AFE with single models and the Two-Models Ensemble, as well as the NFE models. The experiment results show that the proposed AFE is suitable for low-movement as well as high-movement human segmentation in a video.
KW - artificial intelligence
KW - deep learning
KW - ensemble
KW - High movement
KW - human segmentation
KW - video instance segmentation
UR - http://www.scopus.com/inward/record.url?scp=85135060531&partnerID=8YFLogxK
U2 - 10.32604/cmc.2022.028632
DO - 10.32604/cmc.2022.028632
M3 - Article
AN - SCOPUS:85135060531
SN - 1546-2218
VL - 73
SP - 4743
EP - 4762
JO - Computers, Materials and Continua
JF - Computers, Materials and Continua
IS - 3
ER -