Abstract
Perovskite solar cells (PSCs) have been in the spotlight as a promising next-generation solar cell. With the tremendous development of power conversion efficiency (PCE) over the past decades, a considerable amount of research has focused on semi-transparent perovskite solar cells for applications. However, the short-circuit current density (JSC) greatly decreases in semi-transparent PSCs with an increase in transmittance, and this results in a significant decrease in PCE. In this study, semi-transparent PSCs were fabricated by controlling the absorption layer thickness and aperture ratio using a 3D-structured FTO manufactured via processes that can work large areas (direct printing and mist-CVD). This strategy has an advantage in that the aperture ratio (transmission/entire area) can be controlled easily by adjusting pattern specification. The effect of a 3D-structured FTO enhanced the diffuse transmittance and shortened the carrier travel distance; further, it minimized the decrease in PCE because of an increase in transmittance. Our fully semi-transparent PSCs (F–PSCs) with the ITO cathode achieved a PCE of 12.0 %–14.6 %, and an average visible transmittance (AVT) of 13.4 %–17.0 %. These results demonstrate that the parameter of semi-transparent PSCs (transmittance and PCE) can be easily tailored to the application by controlling the specification of the pattern.
Original language | English |
---|---|
Article number | 119817 |
Journal | Renewable Energy |
Volume | 222 |
DOIs | |
State | Published - Feb 2024 |
Keywords
- Direct printing
- Mist-chemical vapor deposition
- Semi-transparent perovskite solar cell
- Three-dimensional-structured fluorine doped tin oxide