Highly sensitive electrochemical detection of proteins using aptamer-coated gold nanoparticles and surface enzyme reactions

Eun Ji Nam, Eum Ji Kim, Alastair W. Wark, Sangchul Rho, Hyungi Kim, Hye Jin Lee

Research output: Contribution to journalArticlepeer-review

39 Scopus citations

Abstract

A novel electrochemical detection methodology is described for the femtomolar detection of proteins which utilizes both DNA aptamer-functionalized nanoparticles and a surface enzymatic reaction. Immunoglobulin E (IgE) was used as a model protein biomarker, which possesses two distinct epitopes for antibody (anti-IgE) and DNA aptamer binding. A surface sandwich assay format was utilized involving the specific adsorption of IgE onto a gold electrode surface that was pre-modified with a monolayer of aptamer-nanoparticle conjugates followed by the specific interaction of alkaline phosphatase (ALP) conjugated anti-IgE. To clearly demonstrate the signal enhancement associated with nanoparticle use, anodic current measurements of the ALP catalyzed oxidation of the enzyme substrate 4-aminophenylphosphate (APP) were also compared with electrode surfaces upon which the aptamer was directly attached. The detection of an unlabelled protein at concentrations as low as 5 fM is a significant improvement compared to conventional electrochemical-based immunoassay approaches and provides a foundation for the practical use and incorporation of nanoparticle-enhanced detection into electrochemical biosensing technologies.

Original languageEnglish
Pages (from-to)2011-2016
Number of pages6
JournalThe Analyst
Volume137
Issue number9
DOIs
StatePublished - 7 May 2012

Fingerprint

Dive into the research topics of 'Highly sensitive electrochemical detection of proteins using aptamer-coated gold nanoparticles and surface enzyme reactions'. Together they form a unique fingerprint.

Cite this