How do drivers use automation? Insights from a survey of partially automated vehicle owners in the United States

Scott Hardman, Jae Hyun Lee, Gil Tal

Research output: Contribution to journalArticlepeer-review

27 Scopus citations

Abstract

In this study we investigate how partially automated vehicles (Tesla electric vehicles with “Autopilot”) are used, including how often automation is used, on what roads, in what weather, and in what traffic conditions. We use a latent class model to identify heterogenous classes of autopilot users, then we use a multinomial logistic regression model to understand the relationship between each latent class and several independent variables, including socio-demographics and vehicle miles travelled (VMT). The latent class model revealed four latent classes: very frequent users, who use it most frequently; frequent users, who use automation frequently in clear weather and on freeways; semi-frequent users who use it for less than half their trips and only on freeways, in clear weather, when there is no traffic; and infrequent users, who use it the least often and only in clear weather, on freeways, when there is no traffic. The multinomial logistic regression model revealed significant differences in VMT between the clusters. Very frequent and Frequent users drive close to 15,000 miles per year, whereas Semi frequent and Infrequent users drive around 10,000 miles per year. The results suggest that consumers who purchase partially automated vehicles and use them frequently may travel more.

Original languageEnglish
Pages (from-to)246-256
Number of pages11
JournalTransportation Research Part A: Policy and Practice
Volume129
DOIs
StatePublished - Nov 2019

Keywords

  • Automated vehicle
  • Behavior
  • Electric vehicle
  • Use
  • Vehicle miles travelled

Fingerprint

Dive into the research topics of 'How do drivers use automation? Insights from a survey of partially automated vehicle owners in the United States'. Together they form a unique fingerprint.

Cite this