Human Epidural AD–MSC Exosomes Improve Function Recovery after Spinal Cord Injury in Rats

Soo Eun Sung, Min Soo Seo, Young In Kim, Kyung Ku Kang, Joo Hee Choi, Sijoon Lee, Minkyoung Sung, Sang Gu Yim, Ju Hyeon Lim, Hyun Gyu Seok, Seung Yun Yang, Gun Woo Lee

Research output: Contribution to journalArticlepeer-review

29 Scopus citations

Abstract

Spinal cord injury (SCI) interferes with the normal function of the autonomic nervous system by blocking circuits between the sensory and motor nerves. Although many studies focus on functional recovery after neurological injury, effective neuroregeneration is still being explored. Recently, extracellular vesicles such as exosomes have emerged as cell‐free therapeutic agents owing to their ability of cell‐to‐cell communication. In particular, exosomes released from mesenchymal stem cells (MSCs) have the potential for tissue regeneration and exhibit therapeutic effectiveness in neurological disorders. In this study, we isolated exosomes from human epidural adipose tissue‐derived MSCs (hEpi AD–MSCs) using the tangential flow filtration method. The isolated exosomes were analyzed for size, concentration, shape, and major surface markers using nanoparticle tracking analysis, transmission electron microscopy, and flow cytometry. To evaluate their effect on SCI recovery, hEpi AD–MSC exosomes were injected intravenously in SCI‐induced rats. hEpi AD–MSC exosomes improved the locomotor function of SCI‐induced rats. The results of histopathological and cytokine assays showed that hEpi AD–MSC exosomes regulated inflammatory response. Genetic profiling of the rat spinal cord tissues revealed changes in the expression of inflammation‐related genes after exosome administration. Collectively, hEpi AD– MSC exosomes are effective in restoring spinal functions by reducing the inflammatory response.

Original languageEnglish
Article number678
JournalBiomedicines
Volume10
Issue number3
DOIs
StatePublished - Mar 2022

Keywords

  • exosomes
  • extracellular vesicles
  • mesenchymal stem cells
  • spinal cord injury

Fingerprint

Dive into the research topics of 'Human Epidural AD–MSC Exosomes Improve Function Recovery after Spinal Cord Injury in Rats'. Together they form a unique fingerprint.

Cite this