Hybrid indoor localization using IMU sensors and smartphone camera

Alwin Poulose, Dong Seog Han

Research output: Contribution to journalArticlepeer-review

71 Scopus citations

Abstract

Smartphone camera or inertial measurement unit (IMU) sensor-based systems can be independently used to provide accurate indoor positioning results. However, the accuracy of an IMU-based localization system depends on the magnitude of sensor errors that are caused by external electromagnetic noise or sensor drifts. Smartphone camera based positioning systems depend on the experimental floor map and the camera poses. The challenge in smartphone camera-based localization is that accuracy depends on the rapidness of changes in the user’s direction. In order to minimize the positioning errors in both the smartphone camera and IMU-based localization systems, we propose hybrid systems that combine both the camera-based and IMU sensor-based approaches for indoor localization. In this paper, an indoor experiment scenario is designed to analyse the performance of the IMU-based localization system, smartphone camera-based localization system and the proposed hybrid indoor localization system. The experiment results demonstrate the effectiveness of the proposed hybrid system and the results show that the proposed hybrid system exhibits significant position accuracy when compared to the IMU and smartphone camera-based localization systems. The performance of the proposed hybrid system is analysed in terms of average localization error and probability distributions of localization errors. The experiment results show that the proposed oriented fast rotated binary robust independent elementary features (BRIEF)-simultaneous localization and mapping (ORB-SLAM) with the IMU sensor hybrid system shows a mean localization error of 0.1398 m and the proposed simultaneous localization and mapping by fusion of keypoints and squared planar markers (UcoSLAM) with IMU sensor-based hybrid system has a 0.0690 m mean localization error and are compared with the individual localization systems in terms of mean error, maximum error, minimum error and standard deviation of error.

Original languageEnglish
Article number5084
JournalSensors
Volume19
Issue number23
DOIs
StatePublished - 1 Dec 2019

Keywords

  • ArUco markers
  • Heading estimation
  • IMU sensors
  • Indoor navigation
  • Indoor positioning system (IPS)
  • Kalman filter
  • Pedestrian dead reckoning (PDR)
  • Sensor fusion
  • Simultaneous localization and mapping (SLAM)
  • Smartphone camera

Fingerprint

Dive into the research topics of 'Hybrid indoor localization using IMU sensors and smartphone camera'. Together they form a unique fingerprint.

Cite this