Hybridization of Layered Titanium Oxides and Covalent Organic Nanosheets into Hollow Spheres for High-Performance Sodium-Ion Batteries with Boosted Electrical/Ionic Conductivity and Ultralong Cycle Life

Minseop Lee, Min Sung Kim, Jae Min Oh, Jin Kuen Park, Seung Min Paek

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

While development of a sodium-ion battery (SIB) cathode has been approached by various routes, research on compatible anodes for advanced SIB systems has not been sufficiently addressed. The anode materials based on titanium oxide typically show low electrical performances in SIB systems primarily due to their low electrical/ionic conductivity. Thus, in this work, layered titanium oxides were hybridized with covalent organic nanosheets (CONs), which exhibited excellent electrical conductivity, to be used as anodes in SIBs. Moreover, to enlarge the accessible areas for sodium ions, the morphology of the hybrid was formulated in the form of a hollow sphere (HS), leading to the highly enhanced ionic conductivity. This synthesis method was based on the expectation of synergetic effects since titanium oxide provides direct electrostatic sodiation sites that shield organic components and CON supports high electrical and ionic conductivity with polarizable sodiation sites. Therefore, the hybrid shows enhanced and stable electrochemical performances as an anode for up to 2600 charge/discharge cycles compared to the HS without CONs. Furthermore, the best reversible capacities obtained from the hybrid were 426.2 and 108.5 mAh/g at current densities of 100 and 6000 mA/g, which are noteworthy results for the TiO2-based material.

Original languageEnglish
Pages (from-to)3019-3036
Number of pages18
JournalACS Nano
Volume17
Issue number3
DOIs
StatePublished - 14 Feb 2023

Keywords

  • covalent organic nanosheets
  • hollow sphere
  • layered titanate
  • organic−inorganic hybrid
  • sodium-ion battery

Fingerprint

Dive into the research topics of 'Hybridization of Layered Titanium Oxides and Covalent Organic Nanosheets into Hollow Spheres for High-Performance Sodium-Ion Batteries with Boosted Electrical/Ionic Conductivity and Ultralong Cycle Life'. Together they form a unique fingerprint.

Cite this