Abstract
We present a hydrodynamic limit from the kinetic thermomechanical Cucker-Smale (TCS) model to the hydrodynamic Cucker-Smale (CS) model in a strong local alignment regime. For this, we first provide a global existence of weak solution, and flocking dynamics for classical solution to the kinetic TCS model with local alignment force. Then we consider one-parameter family of well-prepared initial data to the kinetic TCS model in which the temperature tends to common constant value determined by initial datum, as singular parameter ε tends to zero. In a strong local alignment regime, the limit model is the hydrodynamic CS model in [8]. To verify this hydrodynamic limit rigorously, we adopt the technique introduced in [5] which combines the relative entropy method together with the 2-Wasserstein metric.
Original language | English |
---|---|
Pages (from-to) | 1233-1256 |
Number of pages | 24 |
Journal | Communications on Pure and Applied Analysis |
Volume | 19 |
Issue number | 3 |
DOIs | |
State | Published - 2020 |
Keywords
- Flocking
- Hydrodynamic formulation
- Kinetic formulation
- Particles
- Wasserstein metric