TY - JOUR
T1 - Hydrogen sulfide-producing cystathionine γ-lyase is critical in the progression of kidney fibrosis
AU - Han, Sang Jun
AU - Noh, Mi Ra
AU - Jung, Jung Min
AU - Ishii, Isao
AU - Yoo, Jeongsoo
AU - Kim, Jee In
AU - Park, Kwon Moo
N1 - Publisher Copyright:
© 2017 Elsevier Inc.
PY - 2017/11
Y1 - 2017/11
N2 - Cystathionine γ-lyase (CSE), the last key enzyme of the transsulfuration pathway, is involved in the production of hydrogen sulfide (H2S) and glutathione (GSH), which regulate redox balance and act as important antioxidant molecules. Impairment of the H2S- and GSH-mediated antioxidant system is associated with the progression of chronic kidney disease (CKD), characterized by kidney fibrosis and dysfunction. Here, we evaluated the role of CSE in the progression of kidney fibrosis after unilateral ureteral obstruction (UUO) using mice deficient in the Cse gene. UUO of wild-type mice reduced the expression of H2S-producing enzymes, CSE, cystathionine β-synthase, and 3-mercaptopyruvate sulfurtransferase in the obstructed kidneys, resulting in decreased H2S and GSH levels. Cse gene deletion lowered H2S and GSH levels in the kidneys. Deleting the Cse gene exacerbated the decrease in H2S and GSH levels and increase in superoxide formation and oxidative damage to proteins, lipids, and DNA in the kidneys after UUO, which were accompanied by greater kidney fibrosis, deposition of extracellular matrixes, expression of α-smooth muscle actin, tubular damage, and infiltration of inflammatory cells. Furthermore, Cse gene deletion exacerbated mitochondrial fragmentation and apoptosis of renal tubule cells after UUO. The data provided herein constitute in vivo evidence that Cse deficiency impairs renal the H2S- and GSH-producing activity and exacerbates UUO-induced kidney fibrosis. These data propose a novel therapeutic approach against CKD by regulating CSE and the transsulfuration pathway.
AB - Cystathionine γ-lyase (CSE), the last key enzyme of the transsulfuration pathway, is involved in the production of hydrogen sulfide (H2S) and glutathione (GSH), which regulate redox balance and act as important antioxidant molecules. Impairment of the H2S- and GSH-mediated antioxidant system is associated with the progression of chronic kidney disease (CKD), characterized by kidney fibrosis and dysfunction. Here, we evaluated the role of CSE in the progression of kidney fibrosis after unilateral ureteral obstruction (UUO) using mice deficient in the Cse gene. UUO of wild-type mice reduced the expression of H2S-producing enzymes, CSE, cystathionine β-synthase, and 3-mercaptopyruvate sulfurtransferase in the obstructed kidneys, resulting in decreased H2S and GSH levels. Cse gene deletion lowered H2S and GSH levels in the kidneys. Deleting the Cse gene exacerbated the decrease in H2S and GSH levels and increase in superoxide formation and oxidative damage to proteins, lipids, and DNA in the kidneys after UUO, which were accompanied by greater kidney fibrosis, deposition of extracellular matrixes, expression of α-smooth muscle actin, tubular damage, and infiltration of inflammatory cells. Furthermore, Cse gene deletion exacerbated mitochondrial fragmentation and apoptosis of renal tubule cells after UUO. The data provided herein constitute in vivo evidence that Cse deficiency impairs renal the H2S- and GSH-producing activity and exacerbates UUO-induced kidney fibrosis. These data propose a novel therapeutic approach against CKD by regulating CSE and the transsulfuration pathway.
KW - Chronic kidney disease
KW - Cystathionine γ-lyase
KW - Hydrogen sulfide
KW - Kidney fibrosis
KW - Reactive oxygen species
UR - http://www.scopus.com/inward/record.url?scp=85028026856&partnerID=8YFLogxK
U2 - 10.1016/j.freeradbiomed.2017.08.017
DO - 10.1016/j.freeradbiomed.2017.08.017
M3 - Article
C2 - 28842346
AN - SCOPUS:85028026856
SN - 0891-5849
VL - 112
SP - 423
EP - 432
JO - Free Radical Biology and Medicine
JF - Free Radical Biology and Medicine
ER -