TY - JOUR
T1 - Identification of a specific exosite on activated protein C for interaction with protease-activated receptor 1
AU - Yang, Likui
AU - Bae, Jong Sup
AU - Manithody, Chandrashekhara
AU - Rezaie, Alireza R.
PY - 2007/8/31
Y1 - 2007/8/31
N2 - Activated protein C (APC) is a vitamin K-dependent plasma serine protease which down-regulates the clotting cascade by inactivating procoagulant factors Va and VIIIa by limited proteolysis. In addition to its anticoagulant effect, APC also exhibits cytoprotective and antiinflammatory activity through the endothelial protein C receptor-dependent cleavage of protease activated receptor 1 (PAR-1) on endothelial cells. Recent mutagenesis data have indicated that the basic residues of two surface loops including those on 39 and the Ca 2+-binding 70-80 loops constitute interactive sites for both factors Va and VIIIa, thereby mediating the interaction of APC specifically with these procoagulant cofactors. The basic residues of both loops have been discovered to be dispensable for the interaction of APC with PAR-1. It is not known if a similar exosite-dependent interaction contributes to the specificity of APC recognition of PAR-1 on endothelial cells. In this study, we have identified two acidic residues on helix-162 (Glu-167 and Glu-170) on the protease domain of APC which are required for the protease interaction with PAR-1, but not for its interaction with the procoagulant cofactors. Thus, the substitution of either Glu-167 or Glu-170 with Ala eliminated the cytoprotective signaling properties of APC without affecting its anticoagulant activity. These mutants provide useful tools for initiating in vivo studies to understand the extent to which the anticoagulant versus antiinflammatory activity of APC contributes to its beneficial effect in treating severe sepsis.
AB - Activated protein C (APC) is a vitamin K-dependent plasma serine protease which down-regulates the clotting cascade by inactivating procoagulant factors Va and VIIIa by limited proteolysis. In addition to its anticoagulant effect, APC also exhibits cytoprotective and antiinflammatory activity through the endothelial protein C receptor-dependent cleavage of protease activated receptor 1 (PAR-1) on endothelial cells. Recent mutagenesis data have indicated that the basic residues of two surface loops including those on 39 and the Ca 2+-binding 70-80 loops constitute interactive sites for both factors Va and VIIIa, thereby mediating the interaction of APC specifically with these procoagulant cofactors. The basic residues of both loops have been discovered to be dispensable for the interaction of APC with PAR-1. It is not known if a similar exosite-dependent interaction contributes to the specificity of APC recognition of PAR-1 on endothelial cells. In this study, we have identified two acidic residues on helix-162 (Glu-167 and Glu-170) on the protease domain of APC which are required for the protease interaction with PAR-1, but not for its interaction with the procoagulant cofactors. Thus, the substitution of either Glu-167 or Glu-170 with Ala eliminated the cytoprotective signaling properties of APC without affecting its anticoagulant activity. These mutants provide useful tools for initiating in vivo studies to understand the extent to which the anticoagulant versus antiinflammatory activity of APC contributes to its beneficial effect in treating severe sepsis.
UR - http://www.scopus.com/inward/record.url?scp=34548513539&partnerID=8YFLogxK
U2 - 10.1074/jbc.M702131200
DO - 10.1074/jbc.M702131200
M3 - Article
C2 - 17580306
AN - SCOPUS:34548513539
SN - 0021-9258
VL - 282
SP - 25493
EP - 25500
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 35
ER -