Identifying and Overcoming Artifacts in 1 H-Based Saturation Transfer NOE NMR Experiments

J. Tassilo Grün, Jihyun Kim, Sundaresan Jayanthi, Adonis Lupulescu, E̅riks Kupče, Harald Schwalbe, Lucio Frydman

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Magnetization transfer experiments are versatile nuclear magnetic resonance (NMR) tools providing site-specific information. We have recently discussed how saturation magnetization transfer (SMT) experiments could leverage repeated repolarizations arising from exchanges between labile and water protons to enhance connectivities revealed via the nuclear Overhauser effect (NOE). Repeated experience with SMT has shown that a number of artifacts may arise in these experiments, which may confound the information being sought - particularly when seeking small NOEs among closely spaced resonances. One of these pertains to what we refer to as “spill-over” effects, originating from the use of long saturation pulses leading to changes in the signals of proximate peaks. A second, related but in fact different effect, derives from what we describe as NOE “oversaturation”, a phenomenon whereby the use of overtly intense RF fields overwhelms the cross-relaxation signature. The origin and ways to avoid these two effects are described. A final source of potential artifact arises in applications where the labile 1Hs of interest are bound to 15N-labeled heteronuclei. SMT’s long 1H saturation times will then be usually implemented while under 15N decoupling based on cyclic schemes leading to decoupling sidebands. Although these sidebands usually remain invisible in NMR, they may lead to a very efficient saturation of the main resonance when touched by SMT frequencies. All of these phenomena are herein experimentally demonstrated, and solutions to overcome them are proposed.

Original languageEnglish
Pages (from-to)6289-6298
Number of pages10
JournalJournal of the American Chemical Society
Volume145
Issue number11
DOIs
StatePublished - 22 Mar 2023

Fingerprint

Dive into the research topics of 'Identifying and Overcoming Artifacts in 1 H-Based Saturation Transfer NOE NMR Experiments'. Together they form a unique fingerprint.

Cite this