Abstract
We present a new strategy to strongly and effectively immobilize silver nanoparticles (AgNPs) on polyamide thin film composite membranes to endow antibacterial activity. This method relies on the immobilization of relatively large silica particles (SiO2, ~400nm in diameter), where AgNPs of ~30nm in diameter are tightly and densely bound (AgNP@SiO2), on the membrane surface using cysteamine as a covalent linker. The formation of multiple Ag-S chemical bonds between a "bumpy AgNP@SiO2 and the rough membrane surface provides a great leaching stability of AgNPs and AgNP@SiO2. AgNP@SiO2 particles were well distributed over the entire membrane surface without severe aggregation. The surface coverage of the membrane by AgNP@SiO2 was tuned by adjusting the deposition time and AgNP@SiO2 particle concentration. The AgNP@SiO2-immobilized membrane showed excellent antibacterial properties against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, even with a relatively low particle coverage. Importantly, the separation performance (water flux and salt rejection) of the membrane was not impaired by particle immobilization. These beneficial effects are attributed mainly to the sparse and good distribution of AgNP@SiO2, which can reinforce the antibacterial activity of AgNPs while having a negligible impact on the hydraulic resistance.
Original language | English |
---|---|
Pages (from-to) | 80-91 |
Number of pages | 12 |
Journal | Journal of Membrane Science |
Volume | 499 |
DOIs | |
State | Published - 1 Feb 2016 |
Keywords
- Antibacterial property
- Particle immobilization
- Polyamide thin film composite membrane
- Reverse osmosis
- Silver nanoparticle